找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory; Tradition and Modern Wenpeng Zhang,Yoshio Tanigawa Conference proceedings 2006 Springer-Verlag US 2006 Congruences.Exponenti

[復(fù)制鏈接]
樓主: 凝固
11#
發(fā)表于 2025-3-23 12:19:32 | 只看該作者
On Modular forms of Weight (6, + 1)/5 Satisfying a Certain Differential Equation,We study solutions of a differential equation which arose in our previous study of supersingular elliptic curves. By choosing one fifth of an integer κ as the parameter involved in the differential equation, we obtain modular forms of weight . as solutions. It is observed that this solution is also related to supersingular elliptic curves.
12#
發(fā)表于 2025-3-23 15:11:56 | 只看該作者
Analytic Properties of Multiple Zeta-Functions in Several Variables,We report several recent results on analytic properties of multiple zeta-functions, mainly in several variables, such as the analytic continuation, the asymptotic behaviour, the location of singularities, and the recursive structure. Some results presented in this paper have never been published before.
13#
發(fā)表于 2025-3-23 20:56:50 | 只看該作者
Explicit Congruences for Euler Polynomials,In this paper we establish some explicit congruences for Euler polynomials modulo a general positive integer. As a consequence, if . ∈ ? and 2 ? . then . which may be regarded as a refinement of a multiplication formula.
14#
發(fā)表于 2025-3-24 01:06:34 | 只看該作者
15#
發(fā)表于 2025-3-24 06:05:35 | 只看該作者
Wenpeng Zhang,Yoshio TanigawaDeals with various aspects of number theory, with some chapters taking an algorithmic point of view and.some taking a historical perspective.Includes supplementary material:
16#
發(fā)表于 2025-3-24 07:43:46 | 只看該作者
Zeros of Automorphic ,-Functions and Noncyclic Base Change,ntations .,..., . of . (?.), if it is invariant under the Galois action. A technique used in this article is a version of Selberg orthogonality for automorphic .-functions (Lemma 6.2 and Theorem 6.4), which is proved unconditionally, without assuming . and .,..., . being self-contragredient.
17#
發(fā)表于 2025-3-24 13:29:27 | 只看該作者
18#
發(fā)表于 2025-3-24 15:27:18 | 只看該作者
19#
發(fā)表于 2025-3-24 21:10:43 | 只看該作者
20#
發(fā)表于 2025-3-24 23:58:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 03:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
哈尔滨市| 兰州市| 贵南县| 潜江市| 上杭县| 仁寿县| 铜山县| 疏勒县| 若尔盖县| 全南县| 克什克腾旗| 龙里县| 咸宁市| 礼泉县| 枣庄市| 垫江县| 营口市| 偏关县| 凤山县| 阳泉市| 北海市| 天津市| 腾冲县| 台安县| 佛冈县| 长乐市| 雅江县| 彰化县| 即墨市| 获嘉县| 资阳市| 金阳县| 高平市| 隆化县| 四子王旗| 汶上县| 湄潭县| 广水市| 廉江市| 安多县| 米易县|