找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nondifferentiable Optimization and Polynomial Problems; Naum Z. Shor Book 1998 Springer Science+Business Media Dordrecht 1998 Mathematica.

[復(fù)制鏈接]
查看: 9309|回復(fù): 46
樓主
發(fā)表于 2025-3-21 19:47:01 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Nondifferentiable Optimization and Polynomial Problems
編輯Naum Z. Shor
視頻videohttp://file.papertrans.cn/668/667242/667242.mp4
叢書(shū)名稱Nonconvex Optimization and Its Applications
圖書(shū)封面Titlebook: Nondifferentiable Optimization and Polynomial Problems;  Naum Z. Shor Book 1998 Springer Science+Business Media Dordrecht 1998 Mathematica.
描述Polynomial extremal problems (PEP) constitute one of the most important subclasses of nonlinear programming models. Their distinctive feature is that an objective function and constraints can be expressed by polynomial functions in one or several variables. Let :e = {:e 1, ... , :en} be the vector in n-dimensional real linear space Rn; n PO(:e), PI (:e), ... , Pm (:e) are polynomial functions in R with real coefficients. In general, a PEP can be formulated in the following form: (0.1) find r = inf Po(:e) subject to constraints (0.2) Pi (:e) =0, i=l, ... ,m (a constraint in the form of inequality can be written in the form of equality by introducing a new variable: for example, P( x) ~ 0 is equivalent to P(:e) + y2 = 0). Boolean and mixed polynomial problems can be written in usual form by adding for each boolean variable z the equality: Z2 - Z = O. Let a = {al, ... ,a } be integer vector with nonnegative entries {a;}f=l. n Denote by R[a](:e) monomial in n variables of the form: n R[a](:e) = IT :ef‘; ;=1 d(a) = 2:7=1 ai is the total degree of monomial R[a]. Each polynomial in n variables can be written as sum of monomials with nonzero coefficients: P(:e) = L caR[a](:e), aEA{P) IX x
出版日期Book 1998
關(guān)鍵詞Mathematica; algebra; algorithms; calculus; complexity; graph theory; optimization; programming; combinatori
版次1
doihttps://doi.org/10.1007/978-1-4757-6015-6
isbn_softcover978-1-4419-4792-5
isbn_ebook978-1-4757-6015-6Series ISSN 1571-568X
issn_series 1571-568X
copyrightSpringer Science+Business Media Dordrecht 1998
The information of publication is updating

書(shū)目名稱Nondifferentiable Optimization and Polynomial Problems影響因子(影響力)




書(shū)目名稱Nondifferentiable Optimization and Polynomial Problems影響因子(影響力)學(xué)科排名




書(shū)目名稱Nondifferentiable Optimization and Polynomial Problems網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Nondifferentiable Optimization and Polynomial Problems網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Nondifferentiable Optimization and Polynomial Problems被引頻次




書(shū)目名稱Nondifferentiable Optimization and Polynomial Problems被引頻次學(xué)科排名




書(shū)目名稱Nondifferentiable Optimization and Polynomial Problems年度引用




書(shū)目名稱Nondifferentiable Optimization and Polynomial Problems年度引用學(xué)科排名




書(shū)目名稱Nondifferentiable Optimization and Polynomial Problems讀者反饋




書(shū)目名稱Nondifferentiable Optimization and Polynomial Problems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:56:57 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:12:44 | 只看該作者
Decomposition Methods Based on Nonsmooth Optimization,es to the external memory of a computer. Such methods convert the solution of the original problem into the solution of a series of problems of lower dimension (blocks). They are particularly efficient if the structure of each block permits the use of special, fast solution methods, or the structure
地板
發(fā)表于 2025-3-22 04:53:52 | 只看該作者
5#
發(fā)表于 2025-3-22 11:00:37 | 只看該作者
6#
發(fā)表于 2025-3-22 14:21:55 | 只看該作者
7#
發(fā)表于 2025-3-22 18:25:14 | 只看該作者
Elements of Convex Analysis, Linear Algebra, and Graph Theory,We shall review a number of fundamental properties of convex sets and functions which will be usefull in the following chapters. This review is based on the latest monographies in convex analysis and optimization, mainly, [Psh 69], [HUL 93], [Roc 70], [Roc 82a], [IT 79], [DV 85].
8#
發(fā)表于 2025-3-22 23:42:15 | 只看該作者
9#
發(fā)表于 2025-3-23 04:38:42 | 只看該作者
10#
發(fā)表于 2025-3-23 06:47:36 | 只看該作者
978-1-4419-4792-5Springer Science+Business Media Dordrecht 1998
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 12:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁夏| 正宁县| 连江县| 云和县| 潞城市| 郓城县| 城口县| 阿拉尔市| 兴城市| 鸡西市| 巴塘县| 连州市| 民权县| 海城市| 西盟| 花垣县| 天长市| 乌兰察布市| 云南省| 马关县| 铜川市| 江西省| 玉环县| 吐鲁番市| 台北县| 龙山县| 凯里市| 上高县| 新平| 临猗县| 吐鲁番市| 依安县| 灌南县| 和静县| 咸丰县| 白朗县| 漾濞| 黄骅市| 六盘水市| 长阳| 马山县|