找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nondifferentiable Optimization and Polynomial Problems; Naum Z. Shor Book 1998 Springer Science+Business Media Dordrecht 1998 Mathematica.

[復制鏈接]
樓主: 呻吟
11#
發(fā)表于 2025-3-23 13:33:56 | 只看該作者
Nondifferentiable Optimization and Polynomial Problems978-1-4757-6015-6Series ISSN 1571-568X
12#
發(fā)表于 2025-3-23 15:13:40 | 只看該作者
13#
發(fā)表于 2025-3-23 21:33:36 | 只看該作者
https://doi.org/10.1007/978-1-4757-6015-6Mathematica; algebra; algorithms; calculus; complexity; graph theory; optimization; programming; combinatori
14#
發(fā)表于 2025-3-23 23:23:25 | 只看該作者
15#
發(fā)表于 2025-3-24 03:03:54 | 只看該作者
16#
發(fā)表于 2025-3-24 07:18:29 | 只看該作者
Elements of Information and Numerical Complexity of Polynomial Extremal Problems,ources studying an arbitrary algorithm that solves the given problem. But to get an answer for the question of how good a particular algorithm is we must find the lower bounds for computational resources, the limits that cannot be improved by the “best” algorithm among the potentially possible ones.
17#
發(fā)表于 2025-3-24 14:33:46 | 只看該作者
Book 1998 with nonnegative entries {a;}f=l. n Denote by R[a](:e) monomial in n variables of the form: n R[a](:e) = IT :ef‘; ;=1 d(a) = 2:7=1 ai is the total degree of monomial R[a]. Each polynomial in n variables can be written as sum of monomials with nonzero coefficients: P(:e) = L caR[a](:e), aEA{P) IX x
18#
發(fā)表于 2025-3-24 15:44:07 | 只看該作者
19#
發(fā)表于 2025-3-24 19:23:31 | 只看該作者
20#
發(fā)表于 2025-3-24 23:55:07 | 只看該作者
1571-568X e is that an objective function and constraints can be expressed by polynomial functions in one or several variables. Let :e = {:e 1, ... , :en} be the vector in n-dimensional real linear space Rn; n PO(:e), PI (:e), ... , Pm (:e) are polynomial functions in R with real coefficients. In general, a P
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 18:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
格尔木市| 宿松县| 徐水县| 响水县| 渑池县| 衡南县| 和硕县| 拉萨市| 镇雄县| 汉寿县| 伊金霍洛旗| 德化县| 望都县| 商河县| 鄂温| 恩施市| 广灵县| 元朗区| 威海市| 舟曲县| 惠安县| 若羌县| 桃园市| 松溪县| 绩溪县| 闻喜县| 廉江市| 布尔津县| 开化县| 永川市| 清水县| 内丘县| 石渠县| 三河市| 双城市| 遂宁市| 布拖县| 西和县| 安多县| 洛扎县| 武汉市|