找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-self-adjoint Schr?dinger Operator with a Periodic Potential; Oktay Veliev Book 2021 The Editor(s) (if applicable) and The Author(s), u

[復(fù)制鏈接]
樓主: Kennedy
21#
發(fā)表于 2025-3-25 03:35:08 | 只看該作者
,Spectral Theory for the Schr?dinger Operator with a Complex-Valued Periodic Potential,ed potential . by introducing new concepts and approaches. First, in the introduction section, we introduce the required notations and discuss the results of this chapter. Then, in Sect. ., we study the Floquet solutions of the equation . and consider the general property of the spectrum of .(.). In
22#
發(fā)表于 2025-3-25 10:55:38 | 只看該作者
On the Special Potentials,stigate the operator .(.) with complex-valued even potential . and prove that it may has at most finite number of ESS. In Sect.?., we investigate the spectrum and spectral singularities of the operator .(.) with a periodic PT-symmetric complex-valued potential . . A basic mathematical question of PT
23#
發(fā)表于 2025-3-25 12:59:35 | 只看該作者
,On the Mathieu-Schr?dinger Operator,st, we investigate the asymptotic formulas for the isolated Bloch eigenvalues and find a condition for the isospectrality. Then we consider the asymptotic formulas for the pair of the Bloch eigenvalues and find a necessary and sufficient condition on the potential for which . has no spectral singula
24#
發(fā)表于 2025-3-25 18:20:55 | 只看該作者
25#
發(fā)表于 2025-3-25 20:45:15 | 只看該作者
26#
發(fā)表于 2025-3-26 03:45:31 | 只看該作者
27#
發(fā)表于 2025-3-26 04:32:37 | 只看該作者
Oktay Veliev text. This translation of the second German edition has been prepared to facilitate the use of this work, with all its valuable detail, by the large community of English-speaking scientists. Translation has also provided an opportunity to correct and revise the text, and to update the nomenclature.
28#
發(fā)表于 2025-3-26 11:22:45 | 只看該作者
Oktay Velievs translation of the second German edition has been prepared to facilitate the use of this work, with all its valuable detail, by the large community of English-speaking scientists. Translation has also provided an opportunity to correct and revise the text, and to update the nomenclature. Fortunate
29#
發(fā)表于 2025-3-26 16:19:53 | 只看該作者
30#
發(fā)表于 2025-3-26 17:26:19 | 只看該作者
https://doi.org/10.1057/9780230250833rschu? von Si0. [die Anwesenheit von Quarz trifft für sehr viele Metamorphite zu] k?nnen immer nur die Minerale mit dem h?chstm?glichen SiO.-Gehalt entstehen; die Menge des SiO. übt folglich keinen Einflu? auf die Art des Mineralbestandes mehr aus und braucht nicht in das Diagramm einzugehen. In ein
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 15:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
甘洛县| 星座| 南宫市| 洛扎县| 博罗县| 喜德县| 墨江| 潞西市| 苍山县| 威宁| 芦溪县| 长乐市| 易门县| 阳新县| 出国| 定日县| 嘉荫县| 奉节县| 桦甸市| 梁山县| 周至县| 榆社县| 海林市| 宁安市| 定远县| 高雄县| 金乡县| 宕昌县| 西充县| 景谷| 香港 | 石嘴山市| 司法| 乌兰浩特市| 霍州市| 南昌市| 龙江县| 古丈县| 荣昌县| 延安市| 日土县|