找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-self-adjoint Schr?dinger Operator with a Periodic Potential; Oktay Veliev Book 2021 The Editor(s) (if applicable) and The Author(s), u

[復(fù)制鏈接]
查看: 28443|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:30:37 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Non-self-adjoint Schr?dinger Operator with a Periodic Potential
編輯Oktay Veliev
視頻videohttp://file.papertrans.cn/668/667141/667141.mp4
概述Solves the problem of the non-self-adjoint Schr?dinger operator with periodic potential complete with construction of the spectral expansion.Presents the complete spectral theory of the non-self-adjoi
圖書封面Titlebook: Non-self-adjoint Schr?dinger Operator with a Periodic Potential;  Oktay Veliev Book 2021 The Editor(s) (if applicable) and The Author(s), u
描述.This book gives a complete spectral analysis of the non-self-adjoint Schr?dinger operator with a periodic complex-valued potential. Building from the investigation of the spectrum and spectral singularities and construction of the spectral expansion for the non-self-adjoint Schr?dinger operator, the book features a complete spectral analysis of the Mathieu-Schr?dinger operator and the Schr?dinger operator with a parity-time (PT)-symmetric periodic optical potential. There currently exists no general spectral theorem for non-self-adjoint operators; the approaches in this book thus open up new possibilities for spectral analysis of some of the most important operators used in non-Hermitian quantum mechanics and optics. Featuring detailed proofs and a comprehensive treatment of the subject matter, the book is ideally suited for graduate students at the intersection of physics and mathematics..
出版日期Book 2021
關(guān)鍵詞Non-self-adjoint Operators; Schr?dinger Operators; Periodic Differential Operators; PT-symmetric Potent
版次1
doihttps://doi.org/10.1007/978-3-030-72683-6
isbn_softcover978-3-030-72685-0
isbn_ebook978-3-030-72683-6
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Non-self-adjoint Schr?dinger Operator with a Periodic Potential影響因子(影響力)




書目名稱Non-self-adjoint Schr?dinger Operator with a Periodic Potential影響因子(影響力)學(xué)科排名




書目名稱Non-self-adjoint Schr?dinger Operator with a Periodic Potential網(wǎng)絡(luò)公開度




書目名稱Non-self-adjoint Schr?dinger Operator with a Periodic Potential網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Non-self-adjoint Schr?dinger Operator with a Periodic Potential被引頻次




書目名稱Non-self-adjoint Schr?dinger Operator with a Periodic Potential被引頻次學(xué)科排名




書目名稱Non-self-adjoint Schr?dinger Operator with a Periodic Potential年度引用




書目名稱Non-self-adjoint Schr?dinger Operator with a Periodic Potential年度引用學(xué)科排名




書目名稱Non-self-adjoint Schr?dinger Operator with a Periodic Potential讀者反饋




書目名稱Non-self-adjoint Schr?dinger Operator with a Periodic Potential讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:34:51 | 只看該作者
Book 2021 investigation of the spectrum and spectral singularities and construction of the spectral expansion for the non-self-adjoint Schr?dinger operator, the book features a complete spectral analysis of the Mathieu-Schr?dinger operator and the Schr?dinger operator with a parity-time (PT)-symmetric period
板凳
發(fā)表于 2025-3-22 04:27:39 | 只看該作者
地板
發(fā)表于 2025-3-22 06:58:51 | 只看該作者
Introduction and Overview,djoint and non-self-adjoint operators are discussed. In addition, we explain the need to search for new methods for various cases of the non-self-adjoint Schrdinger operators. Finally we discuss the method and difficulties of studying the Schrdinger operator with a periodic complex-valued potential.
5#
發(fā)表于 2025-3-22 09:00:39 | 只看該作者
Oktay VelievSolves the problem of the non-self-adjoint Schr?dinger operator with periodic potential complete with construction of the spectral expansion.Presents the complete spectral theory of the non-self-adjoi
6#
發(fā)表于 2025-3-22 15:57:45 | 只看該作者
http://image.papertrans.cn/n/image/667141.jpg
7#
發(fā)表于 2025-3-22 18:08:59 | 只看該作者
https://doi.org/10.1007/978-3-030-72683-6Non-self-adjoint Operators; Schr?dinger Operators; Periodic Differential Operators; PT-symmetric Potent
8#
發(fā)表于 2025-3-22 21:37:34 | 只看該作者
9#
發(fā)表于 2025-3-23 05:03:28 | 只看該作者
10#
發(fā)表于 2025-3-23 05:36:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 14:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江北区| 隆子县| 黔西| 邢台县| 綦江县| 烟台市| 陆丰市| 临夏县| 伊通| 平舆县| 太谷县| 惠水县| 锡林郭勒盟| 玉屏| 株洲市| 沙雅县| 怀远县| 岳池县| 额敏县| 姜堰市| 江川县| 河东区| 横峰县| 雅安市| 布尔津县| 上犹县| 北流市| 林周县| 浮山县| 鹤壁市| 利川市| 蒲城县| 凤城市| 莱阳市| 郓城县| 延长县| 涿鹿县| 木兰县| 新兴县| 酉阳| 宣化县|