找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: New Trends and Advanced Methods in Interdisciplinary Mathematical Sciences; Bourama Toni Conference proceedings 2017 Springer Internationa

[復(fù)制鏈接]
樓主: concession
11#
發(fā)表于 2025-3-23 12:30:07 | 只看該作者
New Trends and Advanced Methods in Interdisciplinary Mathematical Sciences978-3-319-55612-3Series ISSN 2520-193X Series E-ISSN 2520-1948
12#
發(fā)表于 2025-3-23 16:20:32 | 只看該作者
13#
發(fā)表于 2025-3-23 21:49:34 | 只看該作者
https://doi.org/10.1007/978-3-319-55612-3Geometric triple systems; psychoneuroimmunology; Image segmentation; Pattern recognition; Darcy-Prandtl
14#
發(fā)表于 2025-3-23 22:48:11 | 只看該作者
Bourama ToniCovers cutting-edge interdisciplinary research at the interfaces of biosciences, engineering, mathematics and health.Accessible to a wide multidisciplinary audience.Offers high quality, peer -reviewed
15#
發(fā)表于 2025-3-24 02:45:45 | 只看該作者
Perfect Polygons and Geometric Triple Systems,nes. The lines in any parallel class meet at a point at infinity. We call these points the . of P. The vertices of P lie on a circle and the perspective points of P lie on the line at infinity in the projective plane, so we can say that the combined set of vertices and perspective points lie on a (r
16#
發(fā)表于 2025-3-24 07:49:59 | 只看該作者
Geometric Triple Systems with Base Z and Zn,o three collinear points in the projective plane. We will show that the set of all points in such a triple system must lie on a cubic curve γ which we call the envelope of the system. We will determine the number and location of equivalent triple systems which have the same cubic envelope. These res
17#
發(fā)表于 2025-3-24 11:55:18 | 只看該作者
18#
發(fā)表于 2025-3-24 15:03:56 | 只看該作者
19#
發(fā)表于 2025-3-24 22:02:39 | 只看該作者
20#
發(fā)表于 2025-3-24 23:48:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 10:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
老河口市| 麻栗坡县| 抚顺县| 吐鲁番市| 开封县| 茌平县| 绥化市| 大悟县| 通化县| 高台县| 大英县| 岢岚县| 鲁山县| 昭苏县| 分宜县| 涿州市| 阳朔县| 广南县| 孙吴县| 来安县| 合阳县| 定兴县| 开江县| 通辽市| 顺昌县| 涪陵区| 琼中| 永嘉县| 汕头市| 塘沽区| 平舆县| 永昌县| 朝阳区| 家居| 宣化县| 南投市| 大丰市| 崇义县| 政和县| 介休市| 邯郸县|