找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Developments in Lie Theory and Their Applications; Juan Tirao,Nolan R. Wallach Book 1992 Birkh?user Boston 1992 algebra.lie group.repr

[復(fù)制鏈接]
樓主: affidavit
51#
發(fā)表于 2025-3-30 09:40:54 | 只看該作者
,Some Zeta Functions Attached to ΓG/K,n . of Γ he assigned a certain remarkable analytic function Z.(?, .) (of one complex variable) whose zeros, for example, capture both topological and spectral properties of the space form Γ./. where .= SO(2). Z.(?, .), now called the ., satisfies a functional equation . → 1 → . (involving Harish-Cha
52#
發(fā)表于 2025-3-30 13:29:34 | 只看該作者
53#
發(fā)表于 2025-3-30 19:19:08 | 只看該作者
Unitary Representations of Reductive Lie Groups and the Orbit Method,ge enough to solve a range of interesting harmonic analysis problems. The Kirillov-Kostant philosophy of coadjoint orbits seeks to provide such a family. The purpose of these notes is to describe what is known about implementing that philosophy, particularly for reductive groups.
54#
發(fā)表于 2025-3-30 20:44:16 | 只看該作者
55#
發(fā)表于 2025-3-31 02:21:27 | 只看該作者
56#
發(fā)表于 2025-3-31 05:38:00 | 只看該作者
,The Vanishing of Scalar Curvature on 6 Manifolds, Einstein’s Equation, and Representation Theory,operate on g by the adjoint representation and on g* by the so-called coadjoint representation. Moreover, set .. = .(g). Since the bilinear form (., .) = .(.) on g × g is nonsingular, we can identify g and g*, which we shall do whenever it is convenient.
57#
發(fā)表于 2025-3-31 11:26:28 | 只看該作者
58#
發(fā)表于 2025-3-31 13:35:41 | 只看該作者
59#
發(fā)表于 2025-3-31 18:50:48 | 只看該作者
,Some Zeta Functions Attached to ΓG/K,spectral properties of the space form Γ./. where .= SO(2). Z.(?, .), now called the ., satisfies a functional equation . → 1 → . (involving Harish-Chandra’s .-function) and, up to finite exceptions involving the possible occurrence of . representations of . in .. (Γ.), ..(?,.) satisfies a .: its “nontrivial” zeros have real part equal ?.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 15:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄大仙区| 石狮市| 梓潼县| 图木舒克市| 柏乡县| 高清| 石河子市| 蚌埠市| 安泽县| 武威市| 冷水江市| 广宁县| 宁武县| 新龙县| 凤凰县| 宝清县| 甘洛县| 沐川县| 盘锦市| 阿拉尔市| 吉水县| 克拉玛依市| 金湖县| 灵川县| 施秉县| 稷山县| 衡东县| 尖扎县| 鞍山市| 鱼台县| 无棣县| 共和县| 普格县| 赣州市| 永寿县| 龙海市| 双牌县| 新郑市| 开化县| 磴口县| 集安市|