找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Developments in Lie Theory and Their Applications; Juan Tirao,Nolan R. Wallach Book 1992 Birkh?user Boston 1992 algebra.lie group.repr

[復制鏈接]
查看: 55807|回復: 58
樓主
發(fā)表于 2025-3-21 18:12:28 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱New Developments in Lie Theory and Their Applications
編輯Juan Tirao,Nolan R. Wallach
視頻videohttp://file.papertrans.cn/666/665019/665019.mp4
叢書名稱Progress in Mathematics
圖書封面Titlebook: New Developments in Lie Theory and Their Applications;  Juan Tirao,Nolan R. Wallach Book 1992 Birkh?user Boston 1992 algebra.lie group.repr
描述Representation theory, and more generally Lie theory, has played a very important role in many of the recent developments of mathematics and in the interaction of mathematics with physics. In August-September 1989, a workshop (Third Workshop on Representation Theory of Lie Groups and its Applications) was held in the environs of C6rdoba, Argentina to present expositions of important recent developments in the field that would be accessible to graduate students and researchers in related fields. This volume contains articles that are edited versions of the lectures (and short courses) given at the workshop. Within representation theory, one of the main open problems is to determine the unitary dual of a real reductive group. Although this prob- lem is as yet unsolved, the recent work of Barbasch, Vogan, Arthur as well as others has shed new light on the structure of the problem. The article of D. Vogan presents an exposition of some aspects of this prob- lem, emphasizing an extension of the orbit method of Kostant, Kirillov. Several examples are given that explain why the orbit method should be extended and how this extension should be implemented.
出版日期Book 1992
關(guān)鍵詞algebra; lie group; representation theory
版次1
doihttps://doi.org/10.1007/978-1-4612-2978-0
isbn_softcover978-1-4612-7743-9
isbn_ebook978-1-4612-2978-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Boston 1992
The information of publication is updating

書目名稱New Developments in Lie Theory and Their Applications影響因子(影響力)




書目名稱New Developments in Lie Theory and Their Applications影響因子(影響力)學科排名




書目名稱New Developments in Lie Theory and Their Applications網(wǎng)絡(luò)公開度




書目名稱New Developments in Lie Theory and Their Applications網(wǎng)絡(luò)公開度學科排名




書目名稱New Developments in Lie Theory and Their Applications被引頻次




書目名稱New Developments in Lie Theory and Their Applications被引頻次學科排名




書目名稱New Developments in Lie Theory and Their Applications年度引用




書目名稱New Developments in Lie Theory and Their Applications年度引用學科排名




書目名稱New Developments in Lie Theory and Their Applications讀者反饋




書目名稱New Developments in Lie Theory and Their Applications讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:21:08 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:26:36 | 只看該作者
地板
發(fā)表于 2025-3-22 07:35:55 | 只看該作者
On Spherical Modules,Let . be a group, . a finite dimensional complex vector space and . : . → .(.) a representation. Let us denote by . the ring of all polynomial functions on .; clearly . acts on .(.). The main problem of the classical invariant theory can be phrased as follows: To find explicitly all the .-invariant polynomial functions on ..
5#
發(fā)表于 2025-3-22 11:22:37 | 只看該作者
Generalized Weil Representations for SL(n,k), n odd, k a Finite Field,Generalized Weil representations for the group . = SL(.), . a finite field, are constructed by contraction of a suitable complex .-vector bundle with the help of an appropriate connection. This extends a previous construction by the authors for the case where . is even, obtained with the help of “Grassmann-Heisenberg” groups.
6#
發(fā)表于 2025-3-22 12:56:25 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/n/image/665019.jpg
7#
發(fā)表于 2025-3-22 19:39:44 | 只看該作者
8#
發(fā)表于 2025-3-22 23:20:36 | 只看該作者
9#
發(fā)表于 2025-3-23 03:08:47 | 只看該作者
10#
發(fā)表于 2025-3-23 05:35:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 17:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
旬邑县| 枞阳县| 佛学| 宁安市| 岳阳市| 乡城县| 彭州市| 沂源县| 特克斯县| 五台县| 娱乐| 邵阳县| 浑源县| 遂宁市| 阜阳市| 麻阳| 梁山县| 新巴尔虎右旗| 元江| 崇阳县| 介休市| 泰兴市| 台东市| 临湘市| 安徽省| 台北县| 肃宁县| 东明县| 华安县| 襄樊市| 阿拉尔市| 曲靖市| 休宁县| 襄樊市| 宽城| 吕梁市| 广灵县| 晋州市| 台前县| 滦南县| 鸡泽县|