找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 28th International C Teddy Mantoro,Minho Lee,Achmad Nizar Hidayanto Conference proceedings 2021 Springer Nat

[復制鏈接]
查看: 29233|回復: 60
樓主
發(fā)表于 2025-3-21 17:24:38 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Neural Information Processing
副標題28th International C
編輯Teddy Mantoro,Minho Lee,Achmad Nizar Hidayanto
視頻videohttp://file.papertrans.cn/664/663584/663584.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Neural Information Processing; 28th International C Teddy Mantoro,Minho Lee,Achmad Nizar Hidayanto Conference proceedings 2021 Springer Nat
描述.The four-volume proceedings LNCS 13108, 13109, 13110, and 13111 constitutes the proceedings of the 28th International Conference on Neural Information Processing, ICONIP 2021, which was held during December 8-12, 2021. The conference was planned to take place in Bali, Indonesia but changed to an online format due to the COVID-19 pandemic. ..The total of 226 full papers presented in these proceedings was carefully reviewed and selected from 1093 submissions. The papers were organized in topical sections as follows:..Part I: Theory and algorithms; ..Part II: Theory and algorithms; human centred computing; AI and cybersecurity;..Part III: Cognitive neurosciences; reliable, robust, and secure machine learning algorithms; theory and applications of natural computing paradigms; advances in deep and shallow machine learning algorithms for biomedical data and imaging; applications; ?..Part IV: Applications..
出版日期Conference proceedings 2021
關鍵詞artificial intelligence; computer vision; data mining; databases; deep learning; image processing; image r
版次1
doihttps://doi.org/10.1007/978-3-030-92185-9
isbn_softcover978-3-030-92184-2
isbn_ebook978-3-030-92185-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Neural Information Processing影響因子(影響力)




書目名稱Neural Information Processing影響因子(影響力)學科排名




書目名稱Neural Information Processing網(wǎng)絡公開度




書目名稱Neural Information Processing網(wǎng)絡公開度學科排名




書目名稱Neural Information Processing被引頻次




書目名稱Neural Information Processing被引頻次學科排名




書目名稱Neural Information Processing年度引用




書目名稱Neural Information Processing年度引用學科排名




書目名稱Neural Information Processing讀者反饋




書目名稱Neural Information Processing讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:10:05 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:00:59 | 只看該作者
地板
發(fā)表于 2025-3-22 07:33:02 | 只看該作者
5#
發(fā)表于 2025-3-22 11:03:56 | 只看該作者
Metric Learning Based Vision Transformer for?Product Matching products. The proposed ML-VIT adopts Arcface loss to achieve intra-class compactness and inter-class dispersion. Compared with Siamese neural network and other pre-trained models in terms of F1 score and accuracy, ML-VIT is proved to yield modest embeddings for product image matching.
6#
發(fā)表于 2025-3-22 14:43:25 | 只看該作者
7#
發(fā)表于 2025-3-22 20:29:08 | 只看該作者
A Focally Discriminative Loss for?Unsupervised Domain Adaptationiscrimination. The intergration of both losses makes the intra-class features close as well as push away the inter-class features far from each other. Moreover, the improved loss is simple yet effective. Our model shows state-of-the-art compared to the most domain adaptation methods.
8#
發(fā)表于 2025-3-22 22:51:35 | 只看該作者
Learning Discriminative Representation with?Attention and?Diversity for?Large-Scale Face Recognitionenvalue decomposition or the approximation process. Visualization results illustrate that models with our attention module and diversity regularizers capture more critical localization information. And competitive performance on large-scale face recognition benchmark verifies the effectiveness of our approaches.
9#
發(fā)表于 2025-3-23 05:12:22 | 只看該作者
Multi-task Perceptual Occlusion Face Detection with?Semantic Attention Networkon is selected and aggregated automatically to the task of occlusion face detection. Finally, MTOFD is tested and compared with some typical algorithms, such as FAN and AOFD, and it is found that our algorithm achieves state-of-the-art performance on dataset MAFA.
10#
發(fā)表于 2025-3-23 05:55:39 | 只看該作者
RAIDU-Net: Image Inpainting via?Residual Attention Fusion and?Gated Information Distillationnd decoder, which can further extract useful low-level features from the generator. Experiments on public databases show that our RAIDU-Net architecture achieves promising results and outperforms the existing state-of-the-art methods.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 22:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
旺苍县| 江阴市| 宣汉县| 清水河县| 温州市| 北宁市| 新竹市| 肃北| 阿合奇县| 馆陶县| 东乡县| 潮安县| 玛纳斯县| 资溪县| 丹凤县| 平谷区| 河源市| 清新县| 广河县| 德钦县| 枞阳县| 会东县| 阿拉善左旗| 湄潭县| 慈溪市| 邹城市| 阜康市| 乌拉特前旗| 荔波县| 平乡县| 政和县| 固安县| 宁化县| 齐河县| 马山县| 大关县| 喜德县| 阳信县| 小金县| 芮城县| 阳西县|