找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 28th International C Teddy Mantoro,Minho Lee,Achmad Nizar Hidayanto Conference proceedings 2021 Springer Nat

[復(fù)制鏈接]
查看: 29234|回復(fù): 60
樓主
發(fā)表于 2025-3-21 17:24:38 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Neural Information Processing
副標題28th International C
編輯Teddy Mantoro,Minho Lee,Achmad Nizar Hidayanto
視頻videohttp://file.papertrans.cn/664/663584/663584.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Neural Information Processing; 28th International C Teddy Mantoro,Minho Lee,Achmad Nizar Hidayanto Conference proceedings 2021 Springer Nat
描述.The four-volume proceedings LNCS 13108, 13109, 13110, and 13111 constitutes the proceedings of the 28th International Conference on Neural Information Processing, ICONIP 2021, which was held during December 8-12, 2021. The conference was planned to take place in Bali, Indonesia but changed to an online format due to the COVID-19 pandemic. ..The total of 226 full papers presented in these proceedings was carefully reviewed and selected from 1093 submissions. The papers were organized in topical sections as follows:..Part I: Theory and algorithms; ..Part II: Theory and algorithms; human centred computing; AI and cybersecurity;..Part III: Cognitive neurosciences; reliable, robust, and secure machine learning algorithms; theory and applications of natural computing paradigms; advances in deep and shallow machine learning algorithms for biomedical data and imaging; applications; ?..Part IV: Applications..
出版日期Conference proceedings 2021
關(guān)鍵詞artificial intelligence; computer vision; data mining; databases; deep learning; image processing; image r
版次1
doihttps://doi.org/10.1007/978-3-030-92185-9
isbn_softcover978-3-030-92184-2
isbn_ebook978-3-030-92185-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Neural Information Processing影響因子(影響力)




書目名稱Neural Information Processing影響因子(影響力)學(xué)科排名




書目名稱Neural Information Processing網(wǎng)絡(luò)公開度




書目名稱Neural Information Processing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Neural Information Processing被引頻次




書目名稱Neural Information Processing被引頻次學(xué)科排名




書目名稱Neural Information Processing年度引用




書目名稱Neural Information Processing年度引用學(xué)科排名




書目名稱Neural Information Processing讀者反饋




書目名稱Neural Information Processing讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:10:05 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:00:59 | 只看該作者
地板
發(fā)表于 2025-3-22 07:33:02 | 只看該作者
5#
發(fā)表于 2025-3-22 11:03:56 | 只看該作者
Metric Learning Based Vision Transformer for?Product Matching products. The proposed ML-VIT adopts Arcface loss to achieve intra-class compactness and inter-class dispersion. Compared with Siamese neural network and other pre-trained models in terms of F1 score and accuracy, ML-VIT is proved to yield modest embeddings for product image matching.
6#
發(fā)表于 2025-3-22 14:43:25 | 只看該作者
7#
發(fā)表于 2025-3-22 20:29:08 | 只看該作者
A Focally Discriminative Loss for?Unsupervised Domain Adaptationiscrimination. The intergration of both losses makes the intra-class features close as well as push away the inter-class features far from each other. Moreover, the improved loss is simple yet effective. Our model shows state-of-the-art compared to the most domain adaptation methods.
8#
發(fā)表于 2025-3-22 22:51:35 | 只看該作者
Learning Discriminative Representation with?Attention and?Diversity for?Large-Scale Face Recognitionenvalue decomposition or the approximation process. Visualization results illustrate that models with our attention module and diversity regularizers capture more critical localization information. And competitive performance on large-scale face recognition benchmark verifies the effectiveness of our approaches.
9#
發(fā)表于 2025-3-23 05:12:22 | 只看該作者
Multi-task Perceptual Occlusion Face Detection with?Semantic Attention Networkon is selected and aggregated automatically to the task of occlusion face detection. Finally, MTOFD is tested and compared with some typical algorithms, such as FAN and AOFD, and it is found that our algorithm achieves state-of-the-art performance on dataset MAFA.
10#
發(fā)表于 2025-3-23 05:55:39 | 只看該作者
RAIDU-Net: Image Inpainting via?Residual Attention Fusion and?Gated Information Distillationnd decoder, which can further extract useful low-level features from the generator. Experiments on public databases show that our RAIDU-Net architecture achieves promising results and outperforms the existing state-of-the-art methods.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 00:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青神县| 图木舒克市| 南安市| 尼玛县| 永春县| 邵武市| 福清市| 延长县| 启东市| 太仆寺旗| 黔江区| 大安市| 鄯善县| 鄂尔多斯市| 仁怀市| 交城县| 星子县| 尼勒克县| 蕉岭县| 天门市| 广西| 南靖县| 清水县| 汾阳市| 衡阳县| 安仁县| 嘉峪关市| 北安市| 当涂县| 长泰县| 鄂托克旗| 江津市| 梁山县| 兴国县| 吉安市| 德安县| 外汇| 长垣县| 老河口市| 蕲春县| 蚌埠市|