找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nathan Jacobson Collected Mathematical Papers; Volume 2 (1947–1965) Nathan Jacobson Book 1989 Birkh?user Boston 1989 algebra.automorphism.c

[復(fù)制鏈接]
樓主: 是英寸
41#
發(fā)表于 2025-3-28 17:21:03 | 只看該作者
Derivation Algebras and Multiplication Algebras of Semi-Simple Jordan Algebrasith a finite basis) over a field of characteristic 0. We show that the derivation algebra . possesses a certain ideal . consisting of derivations that we call inner and that . is also a subalgebra of the Lie multiplication algebra .. For semi-simple algebras we prove that . This result is a conseque
42#
發(fā)表于 2025-3-28 19:53:17 | 只看該作者
Enveloping Algebras of Semi-Simple Lie Algebrasn quantum mechanics. In our paper we gave a method of determining the matrix solutions of such equations. The starting point of our discussion was the observation that if the elements .. satisfy (1) then the elements .., [.., ..] satisfy the multiplication table of a certain basis of the Lie algebra
43#
發(fā)表于 2025-3-29 00:47:11 | 只看該作者
Some Remarks on One-Sided Inverses, where it is understood that .. = l =... It can be verified directly that the .. thus defined satisfy the multiplication table for matrix units:.In particular the elements .. = .. are orthogonal idempotent elements. No ..=0. For by (3) the vanishing of one of the .. implies the vanishing of all; in
44#
發(fā)表于 2025-3-29 04:39:26 | 只看該作者
45#
發(fā)表于 2025-3-29 10:22:38 | 只看該作者
46#
發(fā)表于 2025-3-29 12:27:05 | 只看該作者
47#
發(fā)表于 2025-3-29 15:37:33 | 只看該作者
48#
發(fā)表于 2025-3-29 19:46:49 | 只看該作者
Operator Commutativity in Jordan algebras.→. = . of .. The notion of .-commutativity has been introduced by Jordan, Wigner, and von Neumann [.] who called this concept simply commutativity. Since every Jordan algebra is commutative in the usual sense, the above change in terminology seems to be desirable. In this note we shall study the no
49#
發(fā)表于 2025-3-30 03:02:28 | 只看該作者
50#
發(fā)表于 2025-3-30 07:08:47 | 只看該作者
Structure of Alternative and Jordan Bimodulesciative algebras or in the class of Lie algebras, then this notion is the familiar one for which we are in possession of well-worked theories. The study of bimodules (or representations) of Jordan algebras was initiated by the author in a recent paper [21]. Subsequently the alternative case was cons
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 16:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万载县| 醴陵市| 凤冈县| 桦甸市| 绥德县| 西峡县| 苏州市| 乌鲁木齐县| 赞皇县| 新绛县| 揭阳市| 美姑县| 建湖县| 河北省| 民县| 皮山县| 夏邑县| 洛隆县| 即墨市| 汉阴县| 马鞍山市| 肃宁县| 盐城市| 郑州市| 红原县| 江都市| 日照市| 贵州省| 繁峙县| 泰宁县| 岳阳县| 佛学| 北京市| 大化| 长治县| 浦江县| 象山县| 资中县| 泽库县| 土默特左旗| 綦江县|