找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nathan Jacobson Collected Mathematical Papers; Volume 2 (1947–1965) Nathan Jacobson Book 1989 Birkh?user Boston 1989 algebra.automorphism.c

[復(fù)制鏈接]
樓主: 是英寸
31#
發(fā)表于 2025-3-26 21:40:33 | 只看該作者
978-1-4612-8215-0Birkh?user Boston 1989
32#
發(fā)表于 2025-3-27 01:55:00 | 只看該作者
33#
發(fā)表于 2025-3-27 06:22:18 | 只看該作者
34#
發(fā)表于 2025-3-27 10:30:44 | 只看該作者
35#
發(fā)表于 2025-3-27 14:12:04 | 只看該作者
36#
發(fā)表于 2025-3-27 21:32:40 | 只看該作者
37#
發(fā)表于 2025-3-27 23:57:02 | 只看該作者
Some Remarks on One-Sided Inverses, where it is understood that .. = l =... It can be verified directly that the .. thus defined satisfy the multiplication table for matrix units:.In particular the elements .. = .. are orthogonal idempotent elements. No ..=0. For by (3) the vanishing of one of the .. implies the vanishing of all; in particular, it implies that.contrary to (1).
38#
發(fā)表于 2025-3-28 04:15:37 | 只看該作者
A Personal History and Commentaryhad said in a conversation, the time when it was not possible to appoint a Jew to a position of tenure at Yale College had passed. The new situation permitted the Department of Mathematics to offer me a tenured associated professorship in 1947. I accepted and became the first Jew to hold a tenured p
39#
發(fā)表于 2025-3-28 08:44:16 | 只看該作者
Lie and Jordan Triple Systems systems—called Lie triple systems—arise in a natural way in the study of Jordan algebras and of Jordan triple systems. The latter are defined to be subspaces of an associative algebra that are closed relative to {{.}, .} where .. In the first part of this paper we consider some general properties o
40#
發(fā)表于 2025-3-28 14:28:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 08:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
望都县| 东兰县| 抚州市| 阿拉善右旗| 大渡口区| 雷山县| 阿克| 边坝县| 棋牌| 宜兰县| 淮安市| 竹北市| 通州市| 黄浦区| 安庆市| 沁阳市| 兴国县| 五台县| 尼木县| 漳州市| 富蕴县| 灵宝市| 逊克县| 普安县| 锡林浩特市| 许昌县| 新营市| 东至县| 阿拉善右旗| 南汇区| 太仓市| 淮滨县| 渭源县| 山阴县| 武冈市| 平罗县| 汪清县| 水城县| 综艺| 繁昌县| 嵊州市|