找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nathan Jacobson Collected Mathematical Papers; Volume 2 (1947–1965) Nathan Jacobson Book 1989 Birkh?user Boston 1989 algebra.automorphism.c

[復(fù)制鏈接]
樓主: 是英寸
31#
發(fā)表于 2025-3-26 21:40:33 | 只看該作者
978-1-4612-8215-0Birkh?user Boston 1989
32#
發(fā)表于 2025-3-27 01:55:00 | 只看該作者
33#
發(fā)表于 2025-3-27 06:22:18 | 只看該作者
34#
發(fā)表于 2025-3-27 10:30:44 | 只看該作者
35#
發(fā)表于 2025-3-27 14:12:04 | 只看該作者
36#
發(fā)表于 2025-3-27 21:32:40 | 只看該作者
37#
發(fā)表于 2025-3-27 23:57:02 | 只看該作者
Some Remarks on One-Sided Inverses, where it is understood that .. = l =... It can be verified directly that the .. thus defined satisfy the multiplication table for matrix units:.In particular the elements .. = .. are orthogonal idempotent elements. No ..=0. For by (3) the vanishing of one of the .. implies the vanishing of all; in particular, it implies that.contrary to (1).
38#
發(fā)表于 2025-3-28 04:15:37 | 只看該作者
A Personal History and Commentaryhad said in a conversation, the time when it was not possible to appoint a Jew to a position of tenure at Yale College had passed. The new situation permitted the Department of Mathematics to offer me a tenured associated professorship in 1947. I accepted and became the first Jew to hold a tenured p
39#
發(fā)表于 2025-3-28 08:44:16 | 只看該作者
Lie and Jordan Triple Systems systems—called Lie triple systems—arise in a natural way in the study of Jordan algebras and of Jordan triple systems. The latter are defined to be subspaces of an associative algebra that are closed relative to {{.}, .} where .. In the first part of this paper we consider some general properties o
40#
發(fā)表于 2025-3-28 14:28:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 08:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鸡西市| 诏安县| 无棣县| 抚宁县| 巫山县| 清镇市| 南汇区| 思南县| 黄大仙区| 伊金霍洛旗| 元朗区| 鸡西市| 仪征市| 革吉县| 霍林郭勒市| 哈密市| 平舆县| 亳州市| 景东| 金川县| 景谷| 星座| 江永县| 聂拉木县| 张家港市| 泽普县| 修武县| 巧家县| 子长县| 甘泉县| 苍溪县| 磐石市| 弥渡县| 噶尔县| 广汉市| 南京市| 萝北县| 家居| 永定县| 武隆县| 高州市|