找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Minimum Divergence Methods in Statistical Machine Learning; From an Information Shinto Eguchi,Osamu Komori Book 2022 Springer Japan KK, pa

[復(fù)制鏈接]
查看: 43638|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:24:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Minimum Divergence Methods in Statistical Machine Learning
副標(biāo)題From an Information
編輯Shinto Eguchi,Osamu Komori
視頻videohttp://file.papertrans.cn/635/634627/634627.mp4
概述Provides various applications including boosting and kernel methods in machine learning with a geometric invariance viewpoint.Facilitates a deeper understanding of the complementary relation between s
圖書(shū)封面Titlebook: Minimum Divergence Methods in Statistical Machine Learning; From an Information  Shinto Eguchi,Osamu Komori Book 2022 Springer Japan KK, pa
描述.This book explores minimum divergence methods of statistical machine learning for estimation, ?regression, prediction, and so forth, ?in which we engage in information geometry to elucidate their intrinsic properties of the corresponding loss functions, learning algorithms, and statistical models.?One of the most elementary ?examples is Gauss‘s least squares estimator in a linear regression model, in which the estimator is given by minimization of the sum of squares between a response vector and a vector of the linear subspace hulled by explanatory vectors.? This is extended to Fisher‘s maximum likelihood estimator (MLE) for an exponential model, in which the estimator is provided by minimization of the Kullback-Leibler (KL) divergence between a data distribution and a parametric distribution of the exponential model in an empirical analogue. Thus, we envisage a geometric interpretation of such ?minimization procedures such that a right triangle is kept with Pythagorean identity in the sense of the KL divergence.? This understanding sublimates ?a dualistic interplay between a statistical estimation and model, which requires dual geodesic paths, called m-geodesic and e-geodesic pat
出版日期Book 2022
關(guān)鍵詞Boosting; Independent Component Analysis; Information Geometry; Kernel Method; Machine Learning
版次1
doihttps://doi.org/10.1007/978-4-431-56922-0
isbn_ebook978-4-431-56922-0
copyrightSpringer Japan KK, part of Springer Nature 2022
The information of publication is updating

書(shū)目名稱(chēng)Minimum Divergence Methods in Statistical Machine Learning影響因子(影響力)




書(shū)目名稱(chēng)Minimum Divergence Methods in Statistical Machine Learning影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Minimum Divergence Methods in Statistical Machine Learning網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Minimum Divergence Methods in Statistical Machine Learning網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Minimum Divergence Methods in Statistical Machine Learning被引頻次




書(shū)目名稱(chēng)Minimum Divergence Methods in Statistical Machine Learning被引頻次學(xué)科排名




書(shū)目名稱(chēng)Minimum Divergence Methods in Statistical Machine Learning年度引用




書(shū)目名稱(chēng)Minimum Divergence Methods in Statistical Machine Learning年度引用學(xué)科排名




書(shū)目名稱(chēng)Minimum Divergence Methods in Statistical Machine Learning讀者反饋




書(shū)目名稱(chēng)Minimum Divergence Methods in Statistical Machine Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:36:39 | 只看該作者
Minimum Divergence Methods in Statistical Machine LearningFrom an Information
板凳
發(fā)表于 2025-3-22 02:27:58 | 只看該作者
地板
發(fā)表于 2025-3-22 07:29:06 | 只看該作者
Book 2022 of such ?minimization procedures such that a right triangle is kept with Pythagorean identity in the sense of the KL divergence.? This understanding sublimates ?a dualistic interplay between a statistical estimation and model, which requires dual geodesic paths, called m-geodesic and e-geodesic pat
5#
發(fā)表于 2025-3-22 11:28:42 | 只看該作者
6#
發(fā)表于 2025-3-22 14:15:29 | 只看該作者
7#
發(fā)表于 2025-3-22 17:14:41 | 只看該作者
Springer Japan KK, part of Springer Nature 2022
8#
發(fā)表于 2025-3-22 22:15:12 | 只看該作者
http://image.papertrans.cn/m/image/634627.jpg
9#
發(fā)表于 2025-3-23 03:00:12 | 只看該作者
10#
發(fā)表于 2025-3-23 07:19:00 | 只看該作者
Shinto Eguchi,Osamu KomoriProvides various applications including boosting and kernel methods in machine learning with a geometric invariance viewpoint.Facilitates a deeper understanding of the complementary relation between s
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 05:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仪陇县| 渝北区| 宜宾市| 嘉义市| 葵青区| 临沧市| 葫芦岛市| 沈阳市| 汉阴县| 巴青县| 贵州省| 淮滨县| 岫岩| 贵阳市| 禹城市| 如东县| 东辽县| 科尔| 东兴市| 永泰县| 饶阳县| 苗栗市| 揭阳市| 枣强县| 明溪县| 福海县| 柳江县| 莫力| 诸暨市| 三原县| 泉州市| 乃东县| 正定县| 延津县| 彰化县| 滦平县| 武冈市| 岗巴县| 新沂市| 竹溪县| 天峻县|