找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Minimum Divergence Methods in Statistical Machine Learning; From an Information Shinto Eguchi,Osamu Komori Book 2022 Springer Japan KK, pa

[復制鏈接]
查看: 43643|回復: 35
樓主
發(fā)表于 2025-3-21 16:24:31 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Minimum Divergence Methods in Statistical Machine Learning
副標題From an Information
編輯Shinto Eguchi,Osamu Komori
視頻videohttp://file.papertrans.cn/635/634627/634627.mp4
概述Provides various applications including boosting and kernel methods in machine learning with a geometric invariance viewpoint.Facilitates a deeper understanding of the complementary relation between s
圖書封面Titlebook: Minimum Divergence Methods in Statistical Machine Learning; From an Information  Shinto Eguchi,Osamu Komori Book 2022 Springer Japan KK, pa
描述.This book explores minimum divergence methods of statistical machine learning for estimation, ?regression, prediction, and so forth, ?in which we engage in information geometry to elucidate their intrinsic properties of the corresponding loss functions, learning algorithms, and statistical models.?One of the most elementary ?examples is Gauss‘s least squares estimator in a linear regression model, in which the estimator is given by minimization of the sum of squares between a response vector and a vector of the linear subspace hulled by explanatory vectors.? This is extended to Fisher‘s maximum likelihood estimator (MLE) for an exponential model, in which the estimator is provided by minimization of the Kullback-Leibler (KL) divergence between a data distribution and a parametric distribution of the exponential model in an empirical analogue. Thus, we envisage a geometric interpretation of such ?minimization procedures such that a right triangle is kept with Pythagorean identity in the sense of the KL divergence.? This understanding sublimates ?a dualistic interplay between a statistical estimation and model, which requires dual geodesic paths, called m-geodesic and e-geodesic pat
出版日期Book 2022
關鍵詞Boosting; Independent Component Analysis; Information Geometry; Kernel Method; Machine Learning
版次1
doihttps://doi.org/10.1007/978-4-431-56922-0
isbn_ebook978-4-431-56922-0
copyrightSpringer Japan KK, part of Springer Nature 2022
The information of publication is updating

書目名稱Minimum Divergence Methods in Statistical Machine Learning影響因子(影響力)




書目名稱Minimum Divergence Methods in Statistical Machine Learning影響因子(影響力)學科排名




書目名稱Minimum Divergence Methods in Statistical Machine Learning網(wǎng)絡公開度




書目名稱Minimum Divergence Methods in Statistical Machine Learning網(wǎng)絡公開度學科排名




書目名稱Minimum Divergence Methods in Statistical Machine Learning被引頻次




書目名稱Minimum Divergence Methods in Statistical Machine Learning被引頻次學科排名




書目名稱Minimum Divergence Methods in Statistical Machine Learning年度引用




書目名稱Minimum Divergence Methods in Statistical Machine Learning年度引用學科排名




書目名稱Minimum Divergence Methods in Statistical Machine Learning讀者反饋




書目名稱Minimum Divergence Methods in Statistical Machine Learning讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:36:39 | 只看該作者
Minimum Divergence Methods in Statistical Machine LearningFrom an Information
板凳
發(fā)表于 2025-3-22 02:27:58 | 只看該作者
地板
發(fā)表于 2025-3-22 07:29:06 | 只看該作者
Book 2022 of such ?minimization procedures such that a right triangle is kept with Pythagorean identity in the sense of the KL divergence.? This understanding sublimates ?a dualistic interplay between a statistical estimation and model, which requires dual geodesic paths, called m-geodesic and e-geodesic pat
5#
發(fā)表于 2025-3-22 11:28:42 | 只看該作者
6#
發(fā)表于 2025-3-22 14:15:29 | 只看該作者
7#
發(fā)表于 2025-3-22 17:14:41 | 只看該作者
Springer Japan KK, part of Springer Nature 2022
8#
發(fā)表于 2025-3-22 22:15:12 | 只看該作者
http://image.papertrans.cn/m/image/634627.jpg
9#
發(fā)表于 2025-3-23 03:00:12 | 只看該作者
10#
發(fā)表于 2025-3-23 07:19:00 | 只看該作者
Shinto Eguchi,Osamu KomoriProvides various applications including boosting and kernel methods in machine learning with a geometric invariance viewpoint.Facilitates a deeper understanding of the complementary relation between s
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 07:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
大城县| 泰宁县| 长乐市| 德化县| 石家庄市| 巧家县| 柳林县| 耒阳市| 赣州市| 烟台市| 壤塘县| 时尚| 宁海县| 若尔盖县| 罗平县| 耿马| 石阡县| 武义县| 白河县| 花莲县| 昔阳县| 宿松县| 潜江市| 忻城县| 台湾省| 贞丰县| 岳阳市| 康马县| 尼玛县| 临高县| 纳雍县| 万安县| 襄樊市| 济南市| 阳信县| 枣阳市| 视频| 大名县| 曲麻莱县| 高碑店市| 浮山县|