找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Mathematics and Computation in Music; 7th International Co Mariana Montiel,Francisco Gomez-Martin,Octavio A. Conference proceedings 2019 S

[復(fù)制鏈接]
樓主: Clinton
51#
發(fā)表于 2025-3-30 11:09:29 | 只看該作者
Categories, Musical Instruments, and Drawings: A Unification Dreamategories may help navigate within the complexity of several branches of contemporary music research, giving it a unitarian character. Such a ‘unification dream,’ that we can call ‘cARTegory theory,’ also includes metaphorical references to topos theory.
52#
發(fā)表于 2025-3-30 12:29:00 | 只看該作者
The Hierarchy of Rameau Groupsd ., which transform all types of seventh or ninth chords or more generally, any chords formed of stacks of major or minor thirds. These groups form a hierarchy for inclusion. We study on musical examples the ability of these operators to show symmetries in the progression of seventh chords.
53#
發(fā)表于 2025-3-30 16:48:13 | 只看該作者
0302-9743 2019, held in Madrid, Spain, in June 2019. The 22 full papers and 10 short papers presented were carefully reviewed and selected from 48 submissions. The papers feature research that combines mathematics or computation with music theory, music analysis, composition, and performance. They are organiz
54#
發(fā)表于 2025-3-30 23:44:27 | 只看該作者
55#
發(fā)表于 2025-3-31 02:03:53 | 只看該作者
Distant Neighbors and Interscalar Contiguitiesexatonic and octatonic cycles that uses the principle of minimal voice leading in the diatonic system. At the same time it provides a method to detect chromatic wormholes, i.e. parsimonious connections between diatonic chords, which are not contiguous in the system of second order Clough-Myerson sca
56#
發(fā)表于 2025-3-31 06:36:23 | 只看該作者
Daniel Harasim,Thomas Noll,Martin Rohrmeieres. This book covers the social, economic and ecological dimensions of NTFPs and closes with an examination of future prospects and research directions..978-3-642-26755-0978-3-642-17983-9Series ISSN 1614-9785 Series E-ISSN 2627-1516
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 00:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
栾城县| 石泉县| 远安县| 扬中市| 岑巩县| 九寨沟县| 舒城县| 阳高县| 东海县| 衢州市| 南皮县| 司法| 贺州市| 霍林郭勒市| 杨浦区| 紫金县| 南丹县| 海晏县| 武安市| 伽师县| 洮南市| 贵州省| 屏边| 遵义市| 醴陵市| 邻水| 永德县| 阿克陶县| 大新县| 青冈县| 武城县| 永仁县| 松滋市| 闵行区| 墨脱县| 安龙县| 纳雍县| 芦山县| 女性| 遂溪县| 诏安县|