找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Programming at Oberwolfach; H. K?nig,B. Korte,K. Ritter Book 1981Latest edition Springer-Verlag Berlin Heidelberg 1981 Mathem

[復制鏈接]
樓主: MAXIM
31#
發(fā)表于 2025-3-26 23:17:54 | 只看該作者
Mathematical Programming at Oberwolfach978-3-642-00806-1Series ISSN 0303-3929 Series E-ISSN 2364-8201
32#
發(fā)表于 2025-3-27 03:16:02 | 只看該作者
0303-3929 Overview: 978-3-642-00806-1Series ISSN 0303-3929 Series E-ISSN 2364-8201
33#
發(fā)表于 2025-3-27 06:07:06 | 只看該作者
34#
發(fā)表于 2025-3-27 11:07:04 | 只看該作者
,Khachiyan’s algorithm for linear programming,L.G. Khachiyan’s algorithm to check the solvability of a system of linear inequalities with integral coefficients is described. The running time of the algorithm is polynomial in the number of digits of the coefficients. It can be applied to solve linear programs in polynomial time.
35#
發(fā)表于 2025-3-27 15:32:38 | 只看該作者
36#
發(fā)表于 2025-3-27 18:33:17 | 只看該作者
37#
發(fā)表于 2025-3-27 23:24:56 | 只看該作者
Some continuity properties of polyhedral multifunctions,A multifunction is . if its graph is the union of finitely many polyhedral convex sets. This paper points out some fairly strong continuity properties that such multifunctions satisfy, and it shows how these may be applied to such areas as linear complementarity and parametric programming.
38#
發(fā)表于 2025-3-28 05:59:10 | 只看該作者
A resource decomposition algorithm for general mathematical programs,gorithm, can be developed for general mathematical programs. As an example of this algorithm we obtain an algorithm for bilinear programs. In addition we examine a question of importance for postoptimality analysis, that of finding an optimal dual solution to the original problem from the solution of the decomposed problem.
39#
發(fā)表于 2025-3-28 09:06:06 | 只看該作者
https://doi.org/10.1007/BFb0120916Mathematica; optimization; programming
40#
發(fā)表于 2025-3-28 14:11:17 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 01:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
新密市| 饶河县| 新龙县| 固原市| 泾川县| 喜德县| 宜阳县| 石狮市| 靖州| 屏边| 临邑县| 肃宁县| 沧州市| 宜宾县| 怀仁县| 贺州市| 中阳县| 重庆市| 无为县| 陇南市| 吉水县| 达日县| 密山市| 高密市| 息烽县| 甘孜| 长海县| 德州市| 连州市| 雷州市| 平顶山市| 临江市| 武定县| 朔州市| 樟树市| 德保县| 凭祥市| 呈贡县| 冕宁县| 英山县| 石城县|