找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Programming at Oberwolfach; H. K?nig,B. Korte,K. Ritter Book 1981Latest edition Springer-Verlag Berlin Heidelberg 1981 Mathem

[復(fù)制鏈接]
樓主: MAXIM
21#
發(fā)表于 2025-3-25 04:28:40 | 只看該作者
22#
發(fā)表于 2025-3-25 09:12:00 | 只看該作者
23#
發(fā)表于 2025-3-25 15:39:07 | 只看該作者
24#
發(fā)表于 2025-3-25 18:00:15 | 只看該作者
25#
發(fā)表于 2025-3-25 20:52:42 | 只看該作者
Algorithmic versus axiomatic definitions of matroids,nd calculations of the complexity of matroid properties with respect to various “oracles”. Of particular interest is the fact that matroids can be also axiomatically defined by a girth function and that the GIRTH oracle is significantly stronger than the more standard oracles.
26#
發(fā)表于 2025-3-26 01:27:40 | 只看該作者
,On conditions warranting Φ-subdifferentiability,e a neighbourhood . of .., a neighbourhood . of .. and a constant .>0 such that for .?..The investigations of γ-paraconvexity were stimulated by investigations of H?lder and Lipschitz differentiability of Lagrangians considered by Dolecki and Kurcyusz in [8].
27#
發(fā)表于 2025-3-26 06:47:20 | 只看該作者
Linear programming by an effective method using triangular matrices, constraint becomes inactive, the computational effort in solving the triangular systems corresponds to that of the matrix-updating in the projection method, whereas in all other cases the effort is reduced. This reduction can be very high. Cycling of the method is excluded by a very simple rule.
28#
發(fā)表于 2025-3-26 11:51:46 | 只看該作者
Secant approximation methods for convex optimization,bounds on the optimal value are derived from the piecewise-linear approximations. Convergence to the optimal value of the given problem is established under mild hypotheses. The method has been successfully tested on a variety of problems, including a water supply problem with more than 900 variables and 600 constraints.
29#
發(fā)表于 2025-3-26 13:13:09 | 只看該作者
30#
發(fā)表于 2025-3-26 19:52:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 01:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西乌珠穆沁旗| 冕宁县| 富顺县| 河池市| 宜黄县| 水富县| 陇南市| 东兴市| 济南市| 开化县| 云浮市| 来安县| 藁城市| 开江县| 腾冲县| 潢川县| 克东县| 丰镇市| 彝良县| 闻喜县| 丹寨县| 太仆寺旗| 锡林浩特市| 陇南市| 广水市| 文水县| 于都县| 洛隆县| 黄陵县| 三亚市| 铁力市| 扶绥县| 彰化县| 彰武县| 吉水县| 乡宁县| 云龙县| 防城港市| 钟山县| 镇赉县| 韩城市|