找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Malware Analysis Using Artificial Intelligence and Deep Learning; Mark Stamp,Mamoun Alazab,Andrii Shalaginov Book 2021 The Editor(s) (if a

[復(fù)制鏈接]
樓主: 動(dòng)詞
51#
發(fā)表于 2025-3-30 11:30:29 | 只看該作者
Book 2021ctical DL and AI techniques, including frameworks and development tools enabling the audience to innovate with cutting-edge research advancements in a multitude of malware (and closely related) use cases..
52#
發(fā)表于 2025-3-30 14:26:18 | 只看該作者
A Comparison of Word2Vec, HMM2Vec, and PCA2Vec for Malware Classificationhat we can obtain better classification accuracy based on these feature embeddings, as compared to HMM experiments that directly use the opcode sequences, and serve to establish a baseline. These results show that word embeddings can be a useful feature engineering step in the field of malware analysis.
53#
發(fā)表于 2025-3-30 20:33:54 | 只看該作者
tools, frameworks and techniques to enable readers to implem.?This book is focused on the use of deep learning (DL) and artificial intelligence (AI) as tools to advance the fields of malware detection and analysis. The individual chapters of the book deal with a wide variety of state-of-the-art AI a
54#
發(fā)表于 2025-3-30 23:57:38 | 只看該作者
55#
發(fā)表于 2025-3-31 02:09:50 | 只看該作者
An Empirical Analysis of Image-Based Learning Techniques for Malware Classification work, the results presented in this chapter are based on a larger and more diverse malware dataset, we consider a wider array of features, and we experiment with a much greater variety of learning techniques. Consequently, our results are the most comprehensive and complete that have yet been published.
56#
發(fā)表于 2025-3-31 05:41:19 | 只看該作者
https://doi.org/10.1007/978-3-030-62582-5Malware identification and analysis; Intrusion detection; Computer forensics; Spam detection; Phishing d
57#
發(fā)表于 2025-3-31 10:29:26 | 只看該作者
Mark Stamp,Mamoun Alazab,Andrii ShalaginovExplores how deep learning and artificial intelligence can effectively be used in malware detection and analysis.Showcases state-of-the-art tools, frameworks and techniques to enable readers to implem
58#
發(fā)表于 2025-3-31 15:33:39 | 只看該作者
59#
發(fā)表于 2025-3-31 20:26:44 | 只看該作者
A Selective Survey of Deep Learning Techniques and Their Application to Malware Analysisluding multilayer perceptrons (MLP), convolutional neural networks (CNN), recurrent neural networks (RNN), long short-term memory (LSTM), residual networks (ResNet), generative adversarial networks (GAN), and Word2Vec. We provide a selective survey of applications of each of these architectures to malware-related problems.
60#
發(fā)表于 2025-4-1 00:50:49 | 只看該作者
Deep Learning Techniques for Behavioral Malware Analysis in Cloud IaaSThis chapter focuses on online malware detection techniques in cloud IaaS using machine learning and discusses comparative analysis on the performance metrics of various deep learning models.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 23:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凉城县| 开封市| 南雄市| 万源市| 辛集市| 攀枝花市| 夏津县| 汉中市| 靖边县| 安吉县| 曲阜市| 高碑店市| 库伦旗| 满洲里市| 沙田区| 安远县| 桑日县| 舒兰市| 平安县| 灵璧县| 景东| 安徽省| 双柏县| 友谊县| 济源市| 江油市| 越西县| 久治县| 三江| 景东| 凤翔县| 扶风县| 大理市| 南开区| 石柱| 平塘县| 全州县| 天门市| 开平市| 淄博市| 武隆县|