找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Malware Analysis Using Artificial Intelligence and Deep Learning; Mark Stamp,Mamoun Alazab,Andrii Shalaginov Book 2021 The Editor(s) (if a

[復(fù)制鏈接]
查看: 35346|回復(fù): 61
樓主
發(fā)表于 2025-3-21 16:36:38 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Malware Analysis Using Artificial Intelligence and Deep Learning
編輯Mark Stamp,Mamoun Alazab,Andrii Shalaginov
視頻videohttp://file.papertrans.cn/623/622007/622007.mp4
概述Explores how deep learning and artificial intelligence can effectively be used in malware detection and analysis.Showcases state-of-the-art tools, frameworks and techniques to enable readers to implem
圖書封面Titlebook: Malware Analysis Using Artificial Intelligence and Deep Learning;  Mark Stamp,Mamoun Alazab,Andrii Shalaginov Book 2021 The Editor(s) (if a
描述.?This book is focused on the use of deep learning (DL) and artificial intelligence (AI) as tools to advance the fields of malware detection and analysis. The individual chapters of the book deal with a wide variety of state-of-the-art AI and DL techniques, which are applied to a number of challenging malware-related problems. DL and AI based approaches to malware detection and analysis are largely data driven and hence minimal expert domain knowledge of malware is needed..This book fills a gap between the emerging fields of DL/AI and malware analysis. It covers a broad range of modern and practical DL and AI techniques, including frameworks and development tools enabling the audience to innovate with cutting-edge research advancements in a multitude of malware (and closely related) use cases..
出版日期Book 2021
關(guān)鍵詞Malware identification and analysis; Intrusion detection; Computer forensics; Spam detection; Phishing d
版次1
doihttps://doi.org/10.1007/978-3-030-62582-5
isbn_softcover978-3-030-62584-9
isbn_ebook978-3-030-62582-5
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Malware Analysis Using Artificial Intelligence and Deep Learning影響因子(影響力)




書目名稱Malware Analysis Using Artificial Intelligence and Deep Learning影響因子(影響力)學(xué)科排名




書目名稱Malware Analysis Using Artificial Intelligence and Deep Learning網(wǎng)絡(luò)公開度




書目名稱Malware Analysis Using Artificial Intelligence and Deep Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Malware Analysis Using Artificial Intelligence and Deep Learning被引頻次




書目名稱Malware Analysis Using Artificial Intelligence and Deep Learning被引頻次學(xué)科排名




書目名稱Malware Analysis Using Artificial Intelligence and Deep Learning年度引用




書目名稱Malware Analysis Using Artificial Intelligence and Deep Learning年度引用學(xué)科排名




書目名稱Malware Analysis Using Artificial Intelligence and Deep Learning讀者反饋




書目名稱Malware Analysis Using Artificial Intelligence and Deep Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:26:24 | 只看該作者
Malware Detection with Sequence-Based Machine Learning and Deep Learningatatypes extracted from code: static features and dynamic traces of program execution. We review recent research that applies machine learning on opcode and API call sequences, call graphs, system calls, registry changes, information flow traces, as well as hybrid and raw data, to detect and classif
板凳
發(fā)表于 2025-3-22 04:24:37 | 只看該作者
地板
發(fā)表于 2025-3-22 04:42:50 | 只看該作者
5#
發(fā)表于 2025-3-22 12:36:47 | 只看該作者
A Survey of Intelligent Techniques for Android Malware Detectionted with the network and provide the online functionality and services available with the lowest cost. In this context, the Android operating system (OS) is very popular due to its openness. It has major stakeholder in the smart devices but has also become an attractive target for cyber-criminals. T
6#
發(fā)表于 2025-3-22 15:58:12 | 只看該作者
7#
發(fā)表于 2025-3-22 20:50:15 | 只看該作者
Review of Artificial Intelligence Cyber Threat Assessment Techniques for Increased System Survivabilrs of such systems. The notion of survivability in the context of cybersecurity over multi-user distributed information systems is defined, which is set as the target of cyber defense to prevent the adversary from successfully completing their mission. The cyber-attackers’ kill chain is explained. A
8#
發(fā)表于 2025-3-22 23:54:00 | 只看該作者
9#
發(fā)表于 2025-3-23 03:16:13 | 只看該作者
10#
發(fā)表于 2025-3-23 06:38:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 00:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
铁岭县| 吴桥县| 宽城| 富顺县| 水富县| 高陵县| 永丰县| 靖安县| 江山市| 庆元县| 宁陵县| 碌曲县| 云林县| 小金县| 徐水县| 元阳县| 塔河县| 昌吉市| 深水埗区| 磐安县| 台山市| 山阴县| 淅川县| 徐闻县| 防城港市| 曲麻莱县| 克山县| 樟树市| 金华市| 定远县| 武冈市| 波密县| 永和县| 定南县| 景德镇市| 榆中县| 沛县| 佛山市| 鲜城| 双城市| 濮阳市|