找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning with PySpark; With Natural Languag Pramod Singh Book 20191st edition Pramod Singh 2019 Machine Learning.PySpark.Python.Sup

[復(fù)制鏈接]
查看: 45387|回復(fù): 41
樓主
發(fā)表于 2025-3-21 16:24:56 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning with PySpark
副標題With Natural Languag
編輯Pramod Singh
視頻videohttp://file.papertrans.cn/621/620716/620716.mp4
概述Covers all PySpark machine learning models including PySpark advanced methods.Contains practical applications of machine learning algorithms.Presents advanced features of engineering techniques for ma
圖書封面Titlebook: Machine Learning with PySpark; With Natural Languag Pramod Singh Book 20191st edition Pramod Singh 2019 Machine Learning.PySpark.Python.Sup
描述Build machine learning models, natural language processing applications, and recommender systems with PySpark to solve various business challenges. This book starts with the fundamentals of Spark and its evolution and then covers the entire spectrum of traditional machine learning algorithms along with natural language processing and recommender systems using PySpark.?.Machine Learning with PySpark. shows you how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forest. You’ll also see unsupervised machine learning models such as K-means and hierarchical clustering. A major portion of the book focuses on feature engineering to create useful features with PySpark to train the machine learning models. The natural language processing section covers text processing, text mining, and embedding for classification.?.After reading thisbook, you will understand how to use PySpark’s machine learning library to build and train various machine learning models. Additionally you’ll become comfortable with related PySpark components, such as data ingestion, data processing, and data analysis, that you can use to develop data-dri
出版日期Book 20191st edition
關(guān)鍵詞Machine Learning; PySpark; Python; Supervised Learning; Unsurpervised Learning; Reinforcement Learning; Re
版次1
doihttps://doi.org/10.1007/978-1-4842-4131-8
isbn_ebook978-1-4842-4131-8
copyrightPramod Singh 2019
The information of publication is updating

書目名稱Machine Learning with PySpark影響因子(影響力)




書目名稱Machine Learning with PySpark影響因子(影響力)學(xué)科排名




書目名稱Machine Learning with PySpark網(wǎng)絡(luò)公開度




書目名稱Machine Learning with PySpark網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning with PySpark被引頻次




書目名稱Machine Learning with PySpark被引頻次學(xué)科排名




書目名稱Machine Learning with PySpark年度引用




書目名稱Machine Learning with PySpark年度引用學(xué)科排名




書目名稱Machine Learning with PySpark讀者反饋




書目名稱Machine Learning with PySpark讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:38:38 | 只看該作者
Linear Regression,PySpark and dives deep into the workings of an LR model. It will cover various assumptions to be considered before using LR along with different evaluation metrics. But before even jumping into trying to understand Linear Regression, we must understand the types of variables.
板凳
發(fā)表于 2025-3-22 01:50:10 | 只看該作者
Random Forests,is also used for Classification/Regression. but in terms of accuracy, random forests beat DT classifiers due to various reasons that we will cover later in the chapter. Let’s learn more about decision trees.
地板
發(fā)表于 2025-3-22 06:33:35 | 只看該作者
Recommender Systems,ation is that users have too many options and choices available, yet they don’t like to invest a lot of time going through the entire catalogue of items. Hence, the role of Recommender Systems (RS) becomes critical for recommending relevant items and driving customer conversion.
5#
發(fā)表于 2025-3-22 09:07:46 | 只看該作者
6#
發(fā)表于 2025-3-22 13:34:47 | 只看該作者
Introduction to Machine Learning,earn to recognize a house. We can easily differentiate between a car and a bike just by seeing a few cars and bikes around. We can easily differentiate between a cat and a dog. Even though it seems very easy and intuitive to us as human beings, for machines it can be a herculean task.
7#
發(fā)表于 2025-3-22 20:38:13 | 只看該作者
Natural Language Processing,slation, recommender systems, spam detection, and sentiment analysis. This chapter demonstrates a series of steps in order to process text data and apply a Machine Learning Algorithm on it. It also showcases the sequence embeddings that can be used as an alternative to traditional input features for classification.
8#
發(fā)表于 2025-3-23 01:00:58 | 只看該作者
9#
發(fā)表于 2025-3-23 01:49:19 | 只看該作者
10#
發(fā)表于 2025-3-23 08:26:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 12:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天镇县| 囊谦县| 昌吉市| 杭锦旗| 武川县| 宁陕县| 华亭县| 山丹县| 泰宁县| 海门市| 七台河市| 彰化县| 云梦县| 余江县| 伊宁县| 呼和浩特市| 绩溪县| 博乐市| 崇礼县| 临桂县| 宝鸡市| 锡林郭勒盟| 县级市| 明溪县| 蓬安县| 汉中市| 本溪| 高台县| 开平市| 松潘县| 红河县| 子洲县| 澄城县| 庆城县| 崇阳县| 进贤县| 长汀县| 鹤岗市| 陈巴尔虎旗| 班玛县| 宜都市|