找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning with PySpark; With Natural Languag Pramod Singh Book 20191st edition Pramod Singh 2019 Machine Learning.PySpark.Python.Sup

[復(fù)制鏈接]
查看: 45390|回復(fù): 41
樓主
發(fā)表于 2025-3-21 16:24:56 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning with PySpark
副標(biāo)題With Natural Languag
編輯Pramod Singh
視頻videohttp://file.papertrans.cn/621/620716/620716.mp4
概述Covers all PySpark machine learning models including PySpark advanced methods.Contains practical applications of machine learning algorithms.Presents advanced features of engineering techniques for ma
圖書封面Titlebook: Machine Learning with PySpark; With Natural Languag Pramod Singh Book 20191st edition Pramod Singh 2019 Machine Learning.PySpark.Python.Sup
描述Build machine learning models, natural language processing applications, and recommender systems with PySpark to solve various business challenges. This book starts with the fundamentals of Spark and its evolution and then covers the entire spectrum of traditional machine learning algorithms along with natural language processing and recommender systems using PySpark.?.Machine Learning with PySpark. shows you how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forest. You’ll also see unsupervised machine learning models such as K-means and hierarchical clustering. A major portion of the book focuses on feature engineering to create useful features with PySpark to train the machine learning models. The natural language processing section covers text processing, text mining, and embedding for classification.?.After reading thisbook, you will understand how to use PySpark’s machine learning library to build and train various machine learning models. Additionally you’ll become comfortable with related PySpark components, such as data ingestion, data processing, and data analysis, that you can use to develop data-dri
出版日期Book 20191st edition
關(guān)鍵詞Machine Learning; PySpark; Python; Supervised Learning; Unsurpervised Learning; Reinforcement Learning; Re
版次1
doihttps://doi.org/10.1007/978-1-4842-4131-8
isbn_ebook978-1-4842-4131-8
copyrightPramod Singh 2019
The information of publication is updating

書目名稱Machine Learning with PySpark影響因子(影響力)




書目名稱Machine Learning with PySpark影響因子(影響力)學(xué)科排名




書目名稱Machine Learning with PySpark網(wǎng)絡(luò)公開(kāi)度




書目名稱Machine Learning with PySpark網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Machine Learning with PySpark被引頻次




書目名稱Machine Learning with PySpark被引頻次學(xué)科排名




書目名稱Machine Learning with PySpark年度引用




書目名稱Machine Learning with PySpark年度引用學(xué)科排名




書目名稱Machine Learning with PySpark讀者反饋




書目名稱Machine Learning with PySpark讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:38:38 | 只看該作者
Linear Regression,PySpark and dives deep into the workings of an LR model. It will cover various assumptions to be considered before using LR along with different evaluation metrics. But before even jumping into trying to understand Linear Regression, we must understand the types of variables.
板凳
發(fā)表于 2025-3-22 01:50:10 | 只看該作者
Random Forests,is also used for Classification/Regression. but in terms of accuracy, random forests beat DT classifiers due to various reasons that we will cover later in the chapter. Let’s learn more about decision trees.
地板
發(fā)表于 2025-3-22 06:33:35 | 只看該作者
Recommender Systems,ation is that users have too many options and choices available, yet they don’t like to invest a lot of time going through the entire catalogue of items. Hence, the role of Recommender Systems (RS) becomes critical for recommending relevant items and driving customer conversion.
5#
發(fā)表于 2025-3-22 09:07:46 | 只看該作者
6#
發(fā)表于 2025-3-22 13:34:47 | 只看該作者
Introduction to Machine Learning,earn to recognize a house. We can easily differentiate between a car and a bike just by seeing a few cars and bikes around. We can easily differentiate between a cat and a dog. Even though it seems very easy and intuitive to us as human beings, for machines it can be a herculean task.
7#
發(fā)表于 2025-3-22 20:38:13 | 只看該作者
Natural Language Processing,slation, recommender systems, spam detection, and sentiment analysis. This chapter demonstrates a series of steps in order to process text data and apply a Machine Learning Algorithm on it. It also showcases the sequence embeddings that can be used as an alternative to traditional input features for classification.
8#
發(fā)表于 2025-3-23 01:00:58 | 只看該作者
9#
發(fā)表于 2025-3-23 01:49:19 | 只看該作者
10#
發(fā)表于 2025-3-23 08:26:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 16:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扬州市| 汽车| 漾濞| 定南县| 石阡县| 石首市| 伊金霍洛旗| 沙河市| 麻城市| 保康县| 交口县| 泊头市| 抚宁县| 光泽县| 博野县| 襄樊市| 紫阳县| 临江市| 龙川县| 天峻县| 滨州市| 东源县| 来宾市| 安顺市| 满城县| 峡江县| 苍溪县| 栾川县| 上思县| 清水县| 涞水县| 顺义区| 灌南县| 化州市| 东兰县| 临澧县| 什邡市| 平塘县| 日喀则市| 清河县| 乌苏市|