找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Medical Imaging; 14th International W Xiaohuan Cao,Xuanang Xu,Xi Ouyang Conference proceedings 2024 The Editor(s) (if a

[復(fù)制鏈接]
樓主: 次要
11#
發(fā)表于 2025-3-23 16:54:33 | 只看該作者
,Cross-view Contrastive Mutual Learning Across Masked Autoencoders for?Mammography Diagnosis,is study, we propose a novel cross-view mutual learning method that leverages a Cross-view Masked Autoencoder (CMAE) and a Dual-View Affinity Matrix (DAM) to extract cross-view features and facilitate malignancy classification in mammography. CMAE aims to extract the underlying features from multi-v
12#
發(fā)表于 2025-3-23 21:49:12 | 只看該作者
13#
發(fā)表于 2025-3-23 23:16:03 | 只看該作者
,Boundary-Constrained Graph Network for?Tooth Segmentation on?3D Dental Surfaces, have been proposed for automatic tooth segmentation. However, previous tooth segmentation methods often face challenges in accurately delineating boundaries, leading to a decline in overall segmentation performance. In this paper, we propose a boundary-constrained graph-based neural network that es
14#
發(fā)表于 2025-3-24 04:56:26 | 只看該作者
,FAST-Net: A Coarse-to-fine Pyramid Network for?Face-Skull Transformation,uch as forensic facial reconstruction and craniomaxillofacial (CMF) surgery planning. However, this transformation is a challenging task due to the significant differences between the geometric topologies of the face and skull shapes. In this paper, we propose a novel coarse-to-fine face-skull trans
15#
發(fā)表于 2025-3-24 09:17:19 | 只看該作者
,Mixing Histopathology Prototypes into?Robust Slide-Level Representations for?Cancer Subtyping,ls available. Applying multiple instance learning-based methods or transformer models is computationally expensive as, for each image, all instances have to be processed simultaneously. The MLP-Mixer is an under-explored alternative model to common vision transformers, especially for large-scale dat
16#
發(fā)表于 2025-3-24 14:26:11 | 只看該作者
,Consistency Loss for?Improved Colonoscopy Landmark Detection with?Vision Transformers,om the actual diagnosis, manually processing the snapshots taken during the colonoscopy procedure (for medical record keeping) consumes a large amount of the clinician’s time. This can be automated through post-procedural machine learning based algorithms which classify anatomical landmarks in the c
17#
發(fā)表于 2025-3-24 16:31:57 | 只看該作者
18#
發(fā)表于 2025-3-24 22:34:17 | 只看該作者
19#
發(fā)表于 2025-3-25 00:57:52 | 只看該作者
,Enhancing Anomaly Detection in?Melanoma Diagnosis Through Self-Supervised Training and?Lesion Comparements. While considerable research has addressed melanoma diagnosis using convolutional neural networks (CNNs) on individual dermatological images, a deeper exploration of lesion comparison within a patient is warranted for enhanced anomaly detection, which often signifies malignancy. In this stud
20#
發(fā)表于 2025-3-25 06:59:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 19:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蒲城县| 蒙山县| 布拖县| 南康市| 微山县| 庄河市| 文成县| 清镇市| 娄烦县| 扶沟县| 塔城市| 鞍山市| 宜章县| 宜兰市| 苏尼特右旗| 大洼县| 平邑县| 汉沽区| 樟树市| 保山市| 象州县| 当雄县| 佛冈县| 都兰县| 泸溪县| 丹寨县| 富川| 滦南县| 乌兰县| 威信县| 聂拉木县| 晋州市| 客服| 五原县| 依兰县| 乾安县| 北票市| 永登县| 彭阳县| 苏州市| 霸州市|