找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Medical Imaging; 14th International W Xiaohuan Cao,Xuanang Xu,Xi Ouyang Conference proceedings 2024 The Editor(s) (if a

[復制鏈接]
查看: 34791|回復: 66
樓主
發(fā)表于 2025-3-21 16:59:30 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning in Medical Imaging
副標題14th International W
編輯Xiaohuan Cao,Xuanang Xu,Xi Ouyang
視頻videohttp://file.papertrans.cn/621/620681/620681.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Machine Learning in Medical Imaging; 14th International W Xiaohuan Cao,Xuanang Xu,Xi Ouyang Conference proceedings 2024 The Editor(s) (if a
描述The two-volume set LNCS 14348 and 14139 constitutes the proceedings of the 14th International Workshop on Machine Learning in Medical Imaging, MLMI 2023, held in conjunction with MICCAI 2023, in Vancouver, Canada, in October 2023.?. The 93 full papers presented in the proceedings were carefully reviewed and selected from 139 submissions. They focus on?major trends and challenges in artificial intelligence and machine learning in the medical imaging field, translating medical imaging research into clinical practice. Topics of interests included deep learning, generative adversarial learning, ensemble learning, transfer learning, multi-task learning, manifold learning, reinforcement learning, along with their applications to medical image analysis, computer-aided diagnosis, multi-modality fusion, image reconstruction, image retrieval, cellular image analysis, molecular imaging, digital pathology, etc..
出版日期Conference proceedings 2024
關鍵詞artificial intelligence; bioinformatics; computer networks; computer science; computer systems; computer
版次1
doihttps://doi.org/10.1007/978-3-031-45676-3
isbn_softcover978-3-031-45675-6
isbn_ebook978-3-031-45676-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Machine Learning in Medical Imaging影響因子(影響力)




書目名稱Machine Learning in Medical Imaging影響因子(影響力)學科排名




書目名稱Machine Learning in Medical Imaging網(wǎng)絡公開度




書目名稱Machine Learning in Medical Imaging網(wǎng)絡公開度學科排名




書目名稱Machine Learning in Medical Imaging被引頻次




書目名稱Machine Learning in Medical Imaging被引頻次學科排名




書目名稱Machine Learning in Medical Imaging年度引用




書目名稱Machine Learning in Medical Imaging年度引用學科排名




書目名稱Machine Learning in Medical Imaging讀者反饋




書目名稱Machine Learning in Medical Imaging讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:46:27 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:41:45 | 只看該作者
978-3-031-45675-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
地板
發(fā)表于 2025-3-22 05:40:28 | 只看該作者
5#
發(fā)表于 2025-3-22 09:59:11 | 只看該作者
6#
發(fā)表于 2025-3-22 14:19:05 | 只看該作者
7#
發(fā)表于 2025-3-22 19:47:06 | 只看該作者
8#
發(fā)表于 2025-3-22 21:28:29 | 只看該作者
,Identifying Alzheimer’s Disease-Induced Topology Alterations in Structural Networks Using Convoluti (AD). However, conventional graph learning methods struggle to accurately represent the subtle and heterogeneous topology alterations caused by AD, leading to marginal classification accuracy. In this study, we address this issue through a two-fold approach. Firstly, to more reliably capture AD-ind
9#
發(fā)表于 2025-3-23 04:58:00 | 只看該作者
,Specificity-Aware Federated Graph Learning for?Brain Disorder Analysis with?Functional MRI,by brain disorders. Graph neural network (GNN) has been widely used for fMRI representation learning and brain disorder analysis, thanks to its potent graph representation abilities. Training a generalizable GNN model often requires large-scale subjects from different medical centers/sites, but the
10#
發(fā)表于 2025-3-23 08:45:50 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 17:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
绍兴市| 津市市| 凌源市| 兰州市| 科技| 太白县| 辽阳市| 额尔古纳市| 秦安县| 灵寿县| 根河市| 斗六市| 商南县| 赤峰市| 正定县| 天镇县| 喀什市| 成都市| 资溪县| 鸡泽县| 滕州市| 墨玉县| 新昌县| 鄢陵县| 水城县| 高邮市| 宁德市| 大荔县| 双鸭山市| 乌恰县| 柘荣县| 文登市| 碌曲县| 宁明县| 金阳县| 武强县| 洛宁县| 利川市| 安多县| 新竹市| 固安县|