找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Medical Imaging; 13th International W Chunfeng Lian,Xiaohuan Cao,Zhiming Cui Conference proceedings 2022 Springer Natur

[復(fù)制鏈接]
樓主: Dangle
31#
發(fā)表于 2025-3-27 00:46:32 | 只看該作者
32#
發(fā)表于 2025-3-27 03:47:41 | 只看該作者
Linkai Peng,Li Lin,Pujin Cheng,Huaqing He,Xiaoying Tangs of aging research for some time. For example, the mTOR pathway, a regulator of translation and protein synthesis, has been identified as a common longevity pathway in yeast and Caenorhabditis elegans. In mamm978-1-61779-747-7978-1-60327-507-1
33#
發(fā)表于 2025-3-27 06:41:30 | 只看該作者
Ken C. L. Wong,Mehdi Moradis of aging research for some time. For example, the mTOR pathway, a regulator of translation and protein synthesis, has been identified as a common longevity pathway in yeast and Caenorhabditis elegans. In mamm978-1-61779-747-7978-1-60327-507-1
34#
發(fā)表于 2025-3-27 13:26:38 | 只看該作者
35#
發(fā)表于 2025-3-27 13:45:55 | 只看該作者
36#
發(fā)表于 2025-3-27 19:48:35 | 只看該作者
37#
發(fā)表于 2025-3-28 02:00:14 | 只看該作者
,Function MRI Representation Learning via?Self-supervised Transformer for?Automated Brain Disorder Asonance imaging (rs-fMRI) has been used to capture abnormality or dysfunction functional connectivity networks for automated MDD detection. A functional connectivity network (FCN) of each subject derived from rs-fMRI data can be modeled as a graph consisting of nodes and edges. Graph neural networks
38#
發(fā)表于 2025-3-28 04:28:06 | 只看該作者
,Predicting Age-related Macular Degeneration Progression with?Longitudinal Fundus Images Using Deep e. While existing risk prediction models for progression to late AMD are useful for triaging patients, none utilizes longitudinal color fundus photographs (CFPs) in a patient’s history to estimate the risk of late AMD in a given subsequent time interval. In this work, we seek to evaluate how deep ne
39#
發(fā)表于 2025-3-28 07:39:47 | 只看該作者
,Region-Guided Channel-Wise Attention Network for?Accelerated MRI Reconstruction,rs its development in time-critical applications. In recent years, deep learning-based methods leverage the powerful representations of neural networks to recover high-quality MR images from undersampled measurements, which shortens the acquisition process and enables accelerated MRI scanning. Despi
40#
發(fā)表于 2025-3-28 11:24:32 | 只看該作者
,Student Becomes Decathlon Master in?Retinal Vessel Segmentation via?Dual-Teacher Multi-target Domaiributions. However, most of them only focus on single-target domain adaptation and cannot be applied to the scenario with multiple target domains. In this paper, we propose RVms, a novel unsupervised multi-target domain adaptation approach to segment retinal vessels (RVs) from multimodal and multice
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 01:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洱源县| 信阳市| 顺平县| 井陉县| 盐池县| 全椒县| 苍山县| 崇左市| 濮阳县| 满城县| 玉门市| 大渡口区| 老河口市| 昌乐县| 中超| 宜城市| 肥西县| 勐海县| 颍上县| 花垣县| 绥滨县| 眉山市| 潞城市| 鄂温| 涟水县| 治多县| 乌海市| 东方市| 嘉荫县| 秭归县| 保德县| 西乡县| 承德县| 长宁区| 星子县| 绵竹市| 两当县| 通化县| 元谋县| 博白县| 巢湖市|