找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning in Medical Imaging; 13th International W Chunfeng Lian,Xiaohuan Cao,Zhiming Cui Conference proceedings 2022 Springer Natur

[復制鏈接]
樓主: Dangle
11#
發(fā)表于 2025-3-23 13:19:15 | 只看該作者
,Function MRI Representation Learning via?Self-supervised Transformer for?Automated Brain Disorder Aal information of FCNs for MDD diagnosis. Experimental results on 282 MDD patients and 251 healthy control (HC) subjects demonstrate that our method outperforms several competing methods in MDD identification based on rs-fMRI data. Besides, based on our learned fully connected graphs, we can detect
12#
發(fā)表于 2025-3-23 17:39:26 | 只看該作者
,Predicting Age-related Macular Degeneration Progression with?Longitudinal Fundus Images Using Deep baselines on the Age-Related Eye Disease Study, one of the largest longitudinal AMD cohorts with CFPs. The proposed models outperformed the baseline models that utilized only single-visit CFPs to predict the risk of late AMD (0.879 vs 0.868 in AUC for 2-year prediction, and 0.879 vs 0.862 for 5-year
13#
發(fā)表于 2025-3-23 21:53:12 | 只看該作者
,Region-Guided Channel-Wise Attention Network for?Accelerated MRI Reconstruction,l networks. To address this issue, we propose a novel channel-wise attention which is implemented under the guidance of implicitly learned spatial semantics. We incorporate the proposed attention module in a deep network cascade for fast MRI reconstruction. In experiments, we demonstrate that the pr
14#
發(fā)表于 2025-3-24 02:12:08 | 只看該作者
15#
發(fā)表于 2025-3-24 04:14:45 | 只看該作者
,Rethinking Degradation: Radiograph Super-Resolution via?AID-SRGAN, its counterparts. ., our proposed method achieves 31.90 of PSNR with a scale factor of ., which is 7.05% higher than that obtained by recent work, SPSR ?[.]. Our dataset and code will be made available at: ..
16#
發(fā)表于 2025-3-24 07:02:25 | 只看該作者
,3D Segmentation with?Fully Trainable Gabor Kernels and?Pearson’s Correlation Coefficient,ccurate, robust to learning rates, and does not require manual weight selections. Experiments on 43 3D brain magnetic resonance images with 19 anatomical structures show that, using the proposed loss function with a proper combination of conventional and Gabor-based kernels, we can train a network w
17#
發(fā)表于 2025-3-24 13:01:29 | 只看該作者
,A More Design-Flexible Medical Transformer for?Volumetric Image Segmentation,onal information of each 3D patch. Positional bias can also enrich attention diversities. Moreover, we give detailed reasons why we choose the convolution-based decoder instead of recently proposed Swin Transformer blocks after preliminary experiments on the decoder design. Finally, we propose the C
18#
發(fā)表于 2025-3-24 16:56:21 | 只看該作者
19#
發(fā)表于 2025-3-24 20:36:44 | 只看該作者
,Plug-and-Play Shape Refinement Framework for?Multi-site and?Lifespan Brain Skull Stripping, multi-site and lifespan skull stripping. To deal with the domain shift between multi-site lifespan datasets, we take advantage of the brain shape prior, which is invariant to imaging parameters and ages. Experiments demonstrate that our framework can outperform the state-of-the-art methods on multi
20#
發(fā)表于 2025-3-25 00:12:21 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 01:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
宁明县| 宣武区| 黑河市| 且末县| 舟山市| 鱼台县| 怀安县| 株洲市| 高邑县| 吉木乃县| 永丰县| 浪卡子县| 海兴县| 富顺县| 资源县| 醴陵市| 皋兰县| 竹北市| 二连浩特市| 永宁县| 稻城县| 图木舒克市| 武穴市| 民权县| 凤台县| 台中县| 大港区| 彭州市| 安陆市| 瑞昌市| 汉川市| 拉萨市| 巴彦淖尔市| 会昌县| 剑阁县| 安阳市| 台南县| 遂昌县| 高平市| 永年县| 景洪市|