找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Data Mining in Pattern Recognition; 7th International Co Petra Perner Conference proceedings 2011 Springer-Verlag GmbH

[復(fù)制鏈接]
樓主: 懇求
31#
發(fā)表于 2025-3-26 21:36:14 | 只看該作者
ACE-Cost: Acquisition Cost Efficient Classifier by Hybrid Decision Tree with Local SVM Leaveses share overlapping acquisition procedures, hence the cost of acquiring them as a group is less than the sum of the individual acquisition costs. Our experiments on the standard UCI datasets, a network flow detection application, as well as on synthetic datasets show that, the proposed approach ach
32#
發(fā)表于 2025-3-27 03:41:00 | 只看該作者
Informative Variables Selection for Multi-relational Supervised Learning is equivalent to estimate the conditional density of the target variable given the input variable in non target table. Preliminary experiments on artificial and real data sets show that the approach allows to potentially identify relevant one-to-many variables. In this article, we focus on binary v
33#
發(fā)表于 2025-3-27 06:01:24 | 只看該作者
Spherical Nearest Neighbor Classification: Application to Hyperspectral Datad metrics yields better classification accuracies especially for difficult tasks in spaces with complex irregular class boundaries. This promising outcome serves as a motivation for further development of new models to analyze hyperspectral images in spherical manifolds.
34#
發(fā)表于 2025-3-27 10:09:06 | 只看該作者
Quadratically Constrained Maximum a Posteriori Estimation for Binary Classifierestimate the posteriori probability; instead we construct a discriminant function that provides the same result. The criterion consists of the maximization of an expected cost function and a quadratic constraint of the discriminant function with a weighting function. By selecting different weighting
35#
發(fā)表于 2025-3-27 17:00:59 | 只看該作者
36#
發(fā)表于 2025-3-27 21:47:49 | 只看該作者
37#
發(fā)表于 2025-3-28 01:07:18 | 只看該作者
38#
發(fā)表于 2025-3-28 05:04:44 | 只看該作者
ACE-Cost: Acquisition Cost Efficient Classifier by Hybrid Decision Tree with Local SVM Leavesith the mere act of acquisition of a feature, e.g. CPU time needed to compute the feature out of raw data, the dollar amount spent for gleaning more information, or the patient wellness sacrificed by an invasive medical test, etc. In such applications, a budget constrains the classification process
39#
發(fā)表于 2025-3-28 07:37:15 | 只看該作者
Informative Variables Selection for Multi-relational Supervised Learningl records in secondary tables in one-to-many relationship. To cope with this one-to-many setting, most of the existing approaches try to transform the multi-table representation, namely by propositionalisation, thereby losing the naturally compact initial representation and eventually introducing st
40#
發(fā)表于 2025-3-28 13:33:35 | 只看該作者
Separability of Split Value Criterion with Weighted Separation Gainsterion. Here, the new formulation of the SSV criterion is presented and examined. The results obtained for 21 different benchmark datasets are presented and discussed in comparison with the most popular decision tree node splitting criteria like information gain and Gini index. Because the new SSV d
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 00:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沁阳市| 竹山县| 新绛县| 台中市| 晴隆县| 陆河县| 左权县| 西峡县| 吐鲁番市| 辽源市| 离岛区| 昆明市| 夏河县| 新昌县| 仪征市| 苍山县| 红安县| 夏邑县| 盐山县| 金溪县| 蕲春县| 宁城县| 乌拉特后旗| 泽普县| 和平县| 乌鲁木齐市| 德清县| 濮阳市| 婺源县| 英山县| 开鲁县| 桃园市| 天津市| 建宁县| 孟村| 石泉县| 万盛区| 西畴县| 手机| 分宜县| 即墨市|