找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Data Mining in Pattern Recognition; 7th International Co Petra Perner Conference proceedings 2011 Springer-Verlag GmbH

[復(fù)制鏈接]
樓主: 懇求
11#
發(fā)表于 2025-3-23 13:06:11 | 只看該作者
Smoothing Multinomial Na?ve Bayes in the Presence of Imbalancepared to known methods of smoothing, and is the only method tested that performs well regardless of the type of text preprocessing used. It is particularly effective compared to existing methods when the data is imbalanced.
12#
發(fā)表于 2025-3-23 15:28:59 | 只看該作者
GENCCS: A Correlated Group Difference Approach to Contrast Set Miningn and all confidence to select the attribute-value pairs that are most highly correlated, in order to mine CGDs. Our experiments on real datasets demonstrate the efficiency of our approach and the interestingness of the CGDs discovered.
13#
發(fā)表于 2025-3-23 20:32:05 | 只看該作者
14#
發(fā)表于 2025-3-24 00:18:37 | 只看該作者
Boosting Inspired Process for Improving AUCs much computation time in the training process. Our experiment results show that the new boosting algorithm . does improve ranking performance of AdaBoost when the base learning algorithm is the improved ranking favored decision tree C4.4 or na?ve Bayes.
15#
發(fā)表于 2025-3-24 03:28:51 | 只看該作者
16#
發(fā)表于 2025-3-24 09:31:13 | 只看該作者
Decisions: Algebra and Implementationthe decision algebra operations efficiently and capture classification information in a non-redundant way. Compared to classical decision tree implementations, decision graphs gain learning and classification speed up to 20% without accuracy loss and reduce memory consumption by 44%. This is confirmed by experiments.
17#
發(fā)表于 2025-3-24 11:16:48 | 只看該作者
18#
發(fā)表于 2025-3-24 18:54:36 | 只看該作者
Parameter-Free Anomaly Detection for Categorical Data. In this paper, we propose a formal definition of outliers and formulize outlier detection as an optimization problem. To solve the optimization problem, we design a practical and parameter-free method, named ITB. Experimental results show that the ITB method is much more effective and efficient than existing main-stream methods.
19#
發(fā)表于 2025-3-24 21:11:16 | 只看該作者
20#
發(fā)表于 2025-3-25 01:29:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 00:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
资溪县| 建平县| 大竹县| 毕节市| 介休市| 延寿县| 佛山市| 印江| 郴州市| 资源县| 盐源县| 通海县| 剑川县| 边坝县| 新兴县| 淅川县| 九江市| 涞源县| 子洲县| 利川市| 南召县| 土默特右旗| 荔波县| 天等县| 浏阳市| 临夏市| 上饶市| 山阴县| 铜梁县| 宜川县| 确山县| 广水市| 昆山市| 社旗县| 万州区| 秦皇岛市| 泉州市| 汤阴县| 紫金县| 琼海市| 黔江区|