找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lattice Concepts of Module Theory; Grigore C?lug?reanu Book 2000 Springer Science+Business Media Dordrecht 2000 Group theory.Lattice.algeb

[復(fù)制鏈接]
樓主: Herbaceous
41#
發(fā)表于 2025-3-28 14:44:31 | 只看該作者
42#
發(fā)表于 2025-3-28 19:05:14 | 只看該作者
43#
發(fā)表于 2025-3-29 01:21:56 | 只看該作者
Socle. Torsion lattices,Let . be a lattice with zero.
44#
發(fā)表于 2025-3-29 04:02:22 | 只看該作者
Independence. Semiatomic lattices,A subset {..}. of non-zero elements of a complete lattice . (with 0) is called . if for every . the equality . holds. In this case we use the notation . and we call this join a ..
45#
發(fā)表于 2025-3-29 08:14:33 | 只看該作者
46#
發(fā)表于 2025-3-29 13:32:15 | 只看該作者
Lattices of finite uniform dimension,An element . is called . (or . [33]) if for every . the following implication holds: 0 < . ≤ ., 0 < . ≤ . ? . ≠ 0 (i.e., all non-zero elements from ./0 are essential in ./0).
47#
發(fā)表于 2025-3-29 18:42:04 | 只看該作者
48#
發(fā)表于 2025-3-29 23:07:25 | 只看該作者
Coatomic lattices,The interest in coatomic lattices goes back to H. Bass [2] (in 1960) who defined B-objects, i.e., modules . such that every submodule . is contained in a maximal submodule.
49#
發(fā)表于 2025-3-30 03:43:07 | 只看該作者
,Co—compact lattices,A complete lattice . is called . (or . in [34]) if for every subset . of . such that Λ . = 0 there is a finite subset . of . such that Λ . 0. Obviously, . is co—compact if and only if the dual L° is compact. An element a ∈ . is called . if the sublattice ./0 is co—compact.
50#
發(fā)表于 2025-3-30 04:22:26 | 只看該作者
Supplemented lattices. Locally artinian lattices,For the beginning we mention (a straightforward lattice version of [41]) some simple results about supplements and supplemented lattices.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 08:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙州县| 台北市| 合山市| 论坛| 通山县| 台湾省| 阆中市| 高雄县| 广西| 博白县| 垣曲县| 黄石市| 宝坻区| 剑川县| 浙江省| 二连浩特市| 奇台县| 两当县| 定陶县| 盖州市| 石门县| 安多县| 清苑县| 安化县| 华容县| 炉霍县| 吉木乃县| 连江县| 什邡市| 河间市| 溆浦县| 湾仔区| 伊春市| 简阳市| 宜兰县| 阳西县| 嘉峪关市| 景德镇市| 陇西县| 高邑县| 北宁市|