找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lattice Concepts of Module Theory; Grigore C?lug?reanu Book 2000 Springer Science+Business Media Dordrecht 2000 Group theory.Lattice.algeb

[復(fù)制鏈接]
樓主: Herbaceous
31#
發(fā)表于 2025-3-27 01:02:56 | 只看該作者
32#
發(fā)表于 2025-3-27 01:45:37 | 只看該作者
Grigore C?lug?reanuechniques in the way of their simplicity of use, and rapid and real-time display of whole-field phase maps accompanied by fast quantitative evaluation of these contours. Given these powerful attributes, we can confidently expect holographicand speckle techniques to not only continue to grow and deve
33#
發(fā)表于 2025-3-27 07:31:45 | 只看該作者
34#
發(fā)表于 2025-3-27 12:56:20 | 只看該作者
35#
發(fā)表于 2025-3-27 14:36:42 | 只看該作者
36#
發(fā)表于 2025-3-27 18:28:31 | 只看該作者
Lattice Concepts of Module Theory978-94-015-9588-9Series ISSN 0927-4529
37#
發(fā)表于 2025-3-27 23:23:34 | 只看該作者
Texts in the Mathematical Scienceshttp://image.papertrans.cn/l/image/581930.jpg
38#
發(fā)表于 2025-3-28 03:41:16 | 只看該作者
https://doi.org/10.1007/978-94-015-9588-9Group theory; Lattice; algebra; torsion
39#
發(fā)表于 2025-3-28 06:51:24 | 只看該作者
Basic notions and results,.. A system (.., .., ..., ..; .) with .. 1 ≤ . ≤ . arbitrary sets and . ? .. × .. × ... × .. is called an . between the elements of these sets. If .. = .. = ... = .. = . the relation (., ., ..., .; .) is called . and if . = 2 it is called binary.
40#
發(fā)表于 2025-3-28 11:33:37 | 只看該作者
Compactly generated lattices,. (Nachbin, Stenstr?m) An element . of a complete lattice . is called . if for every subset . of . and . ≤ ∨ . there is a finite subset . ? . such that . ≤ ∨ . and . if for each upper directed subset . ? . and . ≤ ∨ . there is an element .. ? . such that . ≤ ...
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 20:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
牡丹江市| 台山市| 通许县| 东台市| 北川| 平和县| 三门峡市| 图木舒克市| 兴和县| 平山县| 阿鲁科尔沁旗| 左权县| 天水市| 丹寨县| 通许县| 皮山县| 石棉县| 温州市| 伊金霍洛旗| 祁东县| 陈巴尔虎旗| 融水| 郁南县| 襄垣县| 施甸县| 喀喇沁旗| 昂仁县| 河源市| 任丘市| 盐边县| 深泽县| 云梦县| 临夏市| 含山县| 泾川县| 如东县| 隆昌县| 江口县| 昌邑市| 城固县| 岳普湖县|