找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Large-Scale Scientific Computing; 12th International C Ivan Lirkov,Svetozar Margenov Conference proceedings 2020 Springer Nature Switzerlan

[復(fù)制鏈接]
樓主: Hemochromatosis
11#
發(fā)表于 2025-3-23 13:39:15 | 只看該作者
12#
發(fā)表于 2025-3-23 14:42:40 | 只看該作者
Mesh-Hardened Finite Element Analysis Through a Generalized Moving Least-Squares Approximation of Vaethods is tied to the quality of the mesh and may suffer when the latter deteriorates. This paper formulates an alternative approach, which separates the discretization of the domain, i.e., the meshing, from the discretization of the PDE. The latter is accomplished by extending the Generalized Movin
13#
發(fā)表于 2025-3-23 18:32:27 | 只看該作者
An Adaptive LOOCV-Based Algorithm for Solving Elliptic PDEs via RBF CollocationOur adaptive algorithm is meshless and it is characterized by the use of an error indicator, which depends on a leave-one-out cross validation (LOOCV) technique. This approach allows us to locate the areas that need to be refined, also including the chance to add or remove adaptively any points. The
14#
發(fā)表于 2025-3-24 00:35:32 | 只看該作者
15#
發(fā)表于 2025-3-24 04:07:40 | 只看該作者
A Second Order Time Accurate Finite Volume Scheme for the Time-Fractional Diffusion Wave Equation onnd anisotropic diffusion problems. It has been applied later to approximate several types of partial differential equations. The main feature of SUSHI is that the control volumes can only be assumed to be polyhedral. Further, a consistent and stable Discrete Gradient is developed..In this note, we e
16#
發(fā)表于 2025-3-24 06:46:34 | 只看該作者
17#
發(fā)表于 2025-3-24 12:27:28 | 只看該作者
18#
發(fā)表于 2025-3-24 16:58:50 | 只看該作者
Weighted Time-Semidiscretization Quasilinearization Method for Solving Rihards’ Equationolve the classical and a new . - time-fractional (.) equation, that models anomalous diffusion in porous media. High-order approximation of the . fractional derivative is applied. Numerical comparison results are discussed.
19#
發(fā)表于 2025-3-24 19:55:29 | 只看該作者
malignancies in childhood. This recessively inherited condition is named CMMRD for constitutional mismatch repair deficiency. The spectrum of tumours is distinct from LS. Malignant brain tumours are at least as frequent as gastrointestinal tumours, and in more than a third of cases, haematological
20#
發(fā)表于 2025-3-25 02:16:47 | 只看該作者
who did not exhibit the polyposis syndrome, with particular emphasis placed on identifying cases of familial aggregation and cases involving multiple cancers in the large intestine and/or other organs..From this total number, found were 141 cases of multiple colorectal cancer (7.4%) and 179 cases o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
珠海市| 香港| 额济纳旗| 贵溪市| 崇仁县| 青田县| 宜城市| 五常市| 凉城县| 沽源县| 阳谷县| 乌兰县| 安庆市| 百色市| 瓦房店市| 威信县| 华蓥市| 和田县| 富锦市| 石楼县| 南阳市| 临夏市| 景东| 济南市| 钟山县| 临武县| 焉耆| 平江县| 宝鸡市| 晋中市| 定州市| 逊克县| 巍山| 垫江县| 阳山县| 安顺市| 九寨沟县| 呼伦贝尔市| 苏尼特左旗| 定陶县| 昌图县|