找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knot Theory and Its Applications; Kunio Murasugi Textbook 1996 Springer Science+Business Media New York 1996 Algebraic topology.Knot invar

[復(fù)制鏈接]
樓主: 恐怖
31#
發(fā)表于 2025-3-26 23:51:20 | 只看該作者
32#
發(fā)表于 2025-3-27 04:49:57 | 只看該作者
33#
發(fā)表于 2025-3-27 09:18:37 | 只看該作者
Torus Knots,ossible. The next most obvious step is to try to group together knots (or links) with a particular property or properties in common, and then try to classify them. In fact, the techniques we have already discussed are sufficient for us to extract the characteristics of certain particular types of knots.
34#
發(fā)表于 2025-3-27 13:14:37 | 只看該作者
35#
發(fā)表于 2025-3-27 15:46:02 | 只看該作者
36#
發(fā)表于 2025-3-27 18:15:19 | 只看該作者
Knot Tables,nots, these tables were subsequently found to be incomplete. However, considering that these lists were compiled around 100 years ago, they are accurate to a very high degree. In this chapter we shall explain two typical methods of compiling knot tables.
37#
發(fā)表于 2025-3-28 00:55:22 | 只看該作者
Graph Theory Applied to Chemistry, said to be an . of G. The relation/condition mentioned above stipulates that an element, e, of E. is . to elements, say, a and b, of V. (., the condition does not require a and b to be distinct.) The two vertices a and b are said to be endpoints of e. If it is the case that a = b, then e is said to be a loop.
38#
發(fā)表于 2025-3-28 04:47:41 | 只看該作者
39#
發(fā)表于 2025-3-28 10:00:14 | 只看該作者
Tangles and 2-Bridge Knots,not be realized. Nevertheless, the introduction of this new research approach has had a significant impact on knot theory. In this chapter we shall investigate 2-bridge knots (or links), which are a special kind of algebraic knot obtained from trivial tangles.
40#
發(fā)表于 2025-3-28 11:34:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 13:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
曲阳县| 湘西| 夹江县| 龙海市| 肃宁县| 南陵县| 苏尼特右旗| 唐河县| 泽普县| 调兵山市| 剑河县| 钦州市| 津市市| 沐川县| 会宁县| 定安县| 贵溪市| 海兴县| 清远市| 东乌珠穆沁旗| 镇康县| 永顺县| 翼城县| 湘西| 元朗区| 哈巴河县| 和顺县| 依安县| 洛浦县| 万年县| 澄迈县| 扎囊县| 调兵山市| 平度市| 内丘县| 渑池县| 桂阳县| 库尔勒市| 来宾市| 镇巴县| 无锡市|