找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knot Theory and Its Applications; Kunio Murasugi Textbook 1996 Springer Science+Business Media New York 1996 Algebraic topology.Knot invar

[復(fù)制鏈接]
樓主: 恐怖
21#
發(fā)表于 2025-3-25 04:50:59 | 只看該作者
Knot Theory and Its Applications978-0-8176-4719-3Series ISSN 2197-1803 Series E-ISSN 2197-1811
22#
發(fā)表于 2025-3-25 07:59:01 | 只看該作者
23#
發(fā)表于 2025-3-25 13:00:17 | 只看該作者
The Jones Revolution,Alexander polynomial, the signature of a knot, ., V. Jones announced the discovery of a new invariant. Instead of further propagating pure theory in knot theory, this new invariant and its subsequent offshoots unlocked connections to various applicable disciplines, some of which we will discuss in the subsequent chapters.
24#
發(fā)表于 2025-3-25 17:48:39 | 只看該作者
Fundamental Problems of Knot Theory,The problems that arise when we study the theory of knots can essentially be divided into two types. On the one hand, there are those that we shall call ., while, in contrast, there are those that we shall call ..
25#
發(fā)表于 2025-3-25 23:28:49 | 只看該作者
Vassiliev Invariants,Towards the end of the 1980s in the midst of the Jones revolution, V.A. Vassiliev introduced a new concept that has had profound significance in the immediate aftermath of the Jones revolution in knot theory [V]. The importance of these so-called Vassiliev invariants lies in that they may be used to study Jones-type invariants more systematically.
26#
發(fā)表于 2025-3-26 01:12:26 | 只看該作者
27#
發(fā)表于 2025-3-26 04:57:15 | 只看該作者
28#
發(fā)表于 2025-3-26 11:50:36 | 只看該作者
29#
發(fā)表于 2025-3-26 14:42:13 | 只看該作者
Creating Manifolds from Knots, of manifolds (see Definition 8.0.1 below). In this chapter we will show that it is possible to create from an arbitrary knot (or link) a 3-dimensional manifold (usually shortened to 3-manifold). Hence by studying the properties of knots we can gain insight into the properties of 3-manifolds.
30#
發(fā)表于 2025-3-26 17:26:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 06:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙陵县| 许昌县| 新晃| 上高县| 怀来县| 莱西市| 伊川县| 衡南县| 灵武市| 和静县| 库车县| 永春县| 卓资县| 海晏县| 珠海市| 宁海县| 醴陵市| 阜城县| 岳池县| 西乌珠穆沁旗| 宜都市| 阿合奇县| 石屏县| 马关县| 方山县| 德令哈市| 汾西县| 桂平市| 阳城县| 乐至县| 恭城| 永济市| 德清县| 新兴县| 隆子县| 鄂伦春自治旗| 友谊县| 泌阳县| 叙永县| 舟曲县| 宁陕县|