找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: KdV ’95; Proceedings of the I Michiel Hazewinkel,Hans W. Capel,Eduard M. Jager Conference proceedings 1995 Springer Science+Business Media

[復(fù)制鏈接]
樓主: 頻率
61#
發(fā)表于 2025-4-1 02:21:33 | 只看該作者
On the Background of Limit Pass for Korteweg—de Vries Equation as the Dispersion Vanishesean one for conservation laws. The applications to the Cauchy problem to KdV equation, when dispersion tends to zero are considered. Also the Galerkin method for a periodic problem for the KdV equation is considered.
62#
發(fā)表于 2025-4-1 06:22:22 | 只看該作者
63#
發(fā)表于 2025-4-1 10:44:04 | 只看該作者
The KPI Equation with Unconstrained Initial Data= 0 and . = 0. It is shown in particular that the solution .(.,.,.) has a time derivative discontinuous at . = 0 and that at any . ≠ 0 it does not belong to the Schwartz space no matter how small in norm and rapidly decaying at large distances the initial data are chosen.
64#
發(fā)表于 2025-4-1 18:04:46 | 只看該作者
65#
發(fā)表于 2025-4-1 19:05:56 | 只看該作者
Applications of KdVkthroughs in the development of modern nonlinear mathematical science. Of all the completely integrable systems discovered since 1967, KdV certainly remains the most fully understood and arguably the most important for applications to macroscopic phenomena and processes.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安图县| 平顶山市| 民县| 金寨县| 清水县| 元阳县| 阿克陶县| 建昌县| 平顶山市| 天峨县| 陆川县| 丹棱县| 会昌县| 天镇县| 思茅市| 牡丹江市| 灵丘县| 眉山市| 崇文区| 洛扎县| 通许县| 米泉市| 安丘市| 甘肃省| 格尔木市| 汝南县| 巴南区| 腾冲县| 托克托县| 沭阳县| 雷波县| 于田县| 舒城县| 淳安县| 徐汇区| 荣昌县| 衡南县| 贵阳市| 都兰县| 斗六市| 崇文区|