找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: KdV ’95; Proceedings of the I Michiel Hazewinkel,Hans W. Capel,Eduard M. Jager Conference proceedings 1995 Springer Science+Business Media

[復(fù)制鏈接]
樓主: 頻率
21#
發(fā)表于 2025-3-25 04:10:51 | 只看該作者
978-94-010-4011-2Springer Science+Business Media Dordrecht 1995
22#
發(fā)表于 2025-3-25 08:19:47 | 只看該作者
23#
發(fā)表于 2025-3-25 14:53:57 | 只看該作者
An ODE to a PDE: Glories of the KdV Equation. An Appreciation of the Equation on Its 100th Birthday!Though you may not believe me, I am normally of a shy and retiring disposition, modest to a fault, even timid at times. Therefore it is difficult for me to bring myself to make the following bold claim, but I must do so in the interest of the Higher Truth.
24#
發(fā)表于 2025-3-25 18:48:54 | 只看該作者
25#
發(fā)表于 2025-3-25 21:40:25 | 只看該作者
26#
發(fā)表于 2025-3-26 00:11:44 | 只看該作者
Instructive History of the Quantum Inverse Scattering Methodwas described in a short and famous research letter by Gardner, Green, Kruskal, and Miura (GGKM) [2] in 1967. Its quantum version, which is ten years younger, was devised mostly in Leningrad (now St. Petersburg). In what follows, I shall underline some highlights and lessons of this latter development.
27#
發(fā)表于 2025-3-26 04:23:04 | 只看該作者
Korteweg, de Vries, and Dutch Science at the Turn of the Centuryes, which was defended on 1 December 1894 at the Amsterdam University [1]. That the centenary of the equation is nevertheless celebrated in 1995, instead of in 1994, has a good reason: the work of Korteweg and de Vries became internationally known through a joint paper they published in May 1895 [2].
28#
發(fā)表于 2025-3-26 09:37:35 | 只看該作者
29#
發(fā)表于 2025-3-26 15:33:57 | 只看該作者
30#
發(fā)表于 2025-3-26 19:50:13 | 只看該作者
A KdV Equation in 2 + 1 Dimensions: Painlevé Analysis, Solutions and Similarity Reductionshe Darboux—Moutard—Matveev formalism arises in the context of this analysis. Some solutions and their interactions are also analyzed. The singular manifold equations are also used to determine symmetry reductions. This procedure can be related with the direct method of Clarkson and Kruskal.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 21:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绥宁县| 沂源县| 囊谦县| 大洼县| 德庆县| 廉江市| 远安县| 固镇县| 当涂县| 奈曼旗| 峨眉山市| 班玛县| 正安县| 莱阳市| 同德县| 鄄城县| 湾仔区| 龙江县| 普兰县| 石狮市| 华容县| 兰州市| 垫江县| 焉耆| 乐昌市| 澜沧| 无为县| 湛江市| 华坪县| 黑河市| 太和县| 泰宁县| 安徽省| 鄄城县| 饶平县| 治多县| 高陵县| 和田市| 延安市| 油尖旺区| 托克逊县|