找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Inverse Limits; From Continua to Cha W.T. Ingram,William S. Mahavier Book 2012 Springer Science+Business Media, LLC 2012 chaos.continua.dyn

[復(fù)制鏈接]
查看: 25568|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:01:44 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Inverse Limits
副標(biāo)題From Continua to Cha
編輯W.T. Ingram,William S. Mahavier
視頻videohttp://file.papertrans.cn/475/474666/474666.mp4
概述An elementary introduction to inverse limits through inverse limits on [0,1] is included in the first chapter.The general theory of inverse limits is presented for compact Hausdorff spaces over direct
叢書名稱Developments in Mathematics
圖書封面Titlebook: Inverse Limits; From Continua to Cha W.T. Ingram,William S. Mahavier Book 2012 Springer Science+Business Media, LLC 2012 chaos.continua.dyn
描述.Inverse limits provide a powerful tool for constructing complicated spaces from simple ones. They?also turn the study of a dynamical system consisting of a space and a self-map into a study of a (likely more complicated) space and a self-homeomorphism. In four chapters along with an appendix containing background material the authors develop the theory of inverse limits. The book?begins with an introduction through inverse limits on [0,1] before moving to a general treatment of the subject. Special topics in continuum theory complete the?book. Although it is not a book on dynamics, the influence of dynamics can be seen throughout; for instance, it includes studies of inverse limits with maps from families of maps that are of interest to dynamicists such as the logistic and the tent families..This book will serve as a useful reference to graduate students and researchers in continuum theory and dynamical systems. Researchers working in applied areas who are discovering inverse limits in their work will also benefit from this book. .
出版日期Book 2012
關(guān)鍵詞chaos; continua; dynamics; inverse limits; mappings and set valued functions
版次1
doihttps://doi.org/10.1007/978-1-4614-1797-2
isbn_softcover978-1-4939-0074-9
isbn_ebook978-1-4614-1797-2Series ISSN 1389-2177 Series E-ISSN 2197-795X
issn_series 1389-2177
copyrightSpringer Science+Business Media, LLC 2012
The information of publication is updating

書目名稱Inverse Limits影響因子(影響力)




書目名稱Inverse Limits影響因子(影響力)學(xué)科排名




書目名稱Inverse Limits網(wǎng)絡(luò)公開度




書目名稱Inverse Limits網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Inverse Limits被引頻次




書目名稱Inverse Limits被引頻次學(xué)科排名




書目名稱Inverse Limits年度引用




書目名稱Inverse Limits年度引用學(xué)科排名




書目名稱Inverse Limits讀者反饋




書目名稱Inverse Limits讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:57:11 | 只看該作者
1389-2177 limits is presented for compact Hausdorff spaces over direct.Inverse limits provide a powerful tool for constructing complicated spaces from simple ones. They?also turn the study of a dynamical system consisting of a space and a self-map into a study of a (likely more complicated) space and a self-h
板凳
發(fā)表于 2025-3-22 00:52:42 | 只看該作者
W.T. Ingram,William S. MahavierAn elementary introduction to inverse limits through inverse limits on [0,1] is included in the first chapter.The general theory of inverse limits is presented for compact Hausdorff spaces over direct
地板
發(fā)表于 2025-3-22 07:25:34 | 只看該作者
5#
發(fā)表于 2025-3-22 09:23:23 | 只看該作者
6#
發(fā)表于 2025-3-22 12:59:16 | 只看該作者
7#
發(fā)表于 2025-3-22 18:36:16 | 只看該作者
https://doi.org/10.1007/978-1-4614-1797-2chaos; continua; dynamics; inverse limits; mappings and set valued functions
8#
發(fā)表于 2025-3-23 00:42:23 | 只看該作者
data plays a crucial role by providing a robust system wherein a better result in disease detection can be achieved. Initially, the predictions are made on the data available, but the lack of incomplete data leads to a reduction in the quality of accuracy. In addition to incomplete data the differen
9#
發(fā)表于 2025-3-23 04:08:33 | 只看該作者
10#
發(fā)表于 2025-3-23 06:08:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 01:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金堂县| 通渭县| 宁国市| 马山县| 固安县| 凤冈县| 邵武市| 陆河县| 尉氏县| 合肥市| 林周县| 宿州市| 胶南市| 体育| 合阳县| 永川市| 栾川县| 石泉县| 通州市| 务川| 奉新县| 徐州市| 仁怀市| 康保县| 乌什县| 介休市| 辉县市| 纳雍县| 瑞丽市| 襄汾县| 万盛区| 佛山市| 革吉县| 昌平区| 苏尼特右旗| 泰和县| 罗江县| 花莲市| 法库县| 无极县| 迁安市|