找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Inverse Limits; From Continua to Cha W.T. Ingram,William S. Mahavier Book 2012 Springer Science+Business Media, LLC 2012 chaos.continua.dyn

[復(fù)制鏈接]
查看: 25574|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:01:44 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Inverse Limits
副標(biāo)題From Continua to Cha
編輯W.T. Ingram,William S. Mahavier
視頻videohttp://file.papertrans.cn/475/474666/474666.mp4
概述An elementary introduction to inverse limits through inverse limits on [0,1] is included in the first chapter.The general theory of inverse limits is presented for compact Hausdorff spaces over direct
叢書名稱Developments in Mathematics
圖書封面Titlebook: Inverse Limits; From Continua to Cha W.T. Ingram,William S. Mahavier Book 2012 Springer Science+Business Media, LLC 2012 chaos.continua.dyn
描述.Inverse limits provide a powerful tool for constructing complicated spaces from simple ones. They?also turn the study of a dynamical system consisting of a space and a self-map into a study of a (likely more complicated) space and a self-homeomorphism. In four chapters along with an appendix containing background material the authors develop the theory of inverse limits. The book?begins with an introduction through inverse limits on [0,1] before moving to a general treatment of the subject. Special topics in continuum theory complete the?book. Although it is not a book on dynamics, the influence of dynamics can be seen throughout; for instance, it includes studies of inverse limits with maps from families of maps that are of interest to dynamicists such as the logistic and the tent families..This book will serve as a useful reference to graduate students and researchers in continuum theory and dynamical systems. Researchers working in applied areas who are discovering inverse limits in their work will also benefit from this book. .
出版日期Book 2012
關(guān)鍵詞chaos; continua; dynamics; inverse limits; mappings and set valued functions
版次1
doihttps://doi.org/10.1007/978-1-4614-1797-2
isbn_softcover978-1-4939-0074-9
isbn_ebook978-1-4614-1797-2Series ISSN 1389-2177 Series E-ISSN 2197-795X
issn_series 1389-2177
copyrightSpringer Science+Business Media, LLC 2012
The information of publication is updating

書目名稱Inverse Limits影響因子(影響力)




書目名稱Inverse Limits影響因子(影響力)學(xué)科排名




書目名稱Inverse Limits網(wǎng)絡(luò)公開度




書目名稱Inverse Limits網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Inverse Limits被引頻次




書目名稱Inverse Limits被引頻次學(xué)科排名




書目名稱Inverse Limits年度引用




書目名稱Inverse Limits年度引用學(xué)科排名




書目名稱Inverse Limits讀者反饋




書目名稱Inverse Limits讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:57:11 | 只看該作者
1389-2177 limits is presented for compact Hausdorff spaces over direct.Inverse limits provide a powerful tool for constructing complicated spaces from simple ones. They?also turn the study of a dynamical system consisting of a space and a self-map into a study of a (likely more complicated) space and a self-h
板凳
發(fā)表于 2025-3-22 00:52:42 | 只看該作者
W.T. Ingram,William S. MahavierAn elementary introduction to inverse limits through inverse limits on [0,1] is included in the first chapter.The general theory of inverse limits is presented for compact Hausdorff spaces over direct
地板
發(fā)表于 2025-3-22 07:25:34 | 只看該作者
5#
發(fā)表于 2025-3-22 09:23:23 | 只看該作者
6#
發(fā)表于 2025-3-22 12:59:16 | 只看該作者
7#
發(fā)表于 2025-3-22 18:36:16 | 只看該作者
https://doi.org/10.1007/978-1-4614-1797-2chaos; continua; dynamics; inverse limits; mappings and set valued functions
8#
發(fā)表于 2025-3-23 00:42:23 | 只看該作者
data plays a crucial role by providing a robust system wherein a better result in disease detection can be achieved. Initially, the predictions are made on the data available, but the lack of incomplete data leads to a reduction in the quality of accuracy. In addition to incomplete data the differen
9#
發(fā)表于 2025-3-23 04:08:33 | 只看該作者
10#
發(fā)表于 2025-3-23 06:08:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 15:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖安县| 健康| 虹口区| 东港市| 北宁市| 乐东| 德化县| 济南市| 抚远县| 宣威市| 永福县| 冷水江市| 平邑县| 望谟县| 黔西县| 逊克县| 赤壁市| 娱乐| 佛山市| 新乐市| 苍山县| 天等县| 丰原市| 卓资县| 九江县| 琼结县| 峡江县| 五指山市| 博湖县| 灯塔市| 长葛市| 东莞市| 奇台县| 体育| 临西县| 吉木萨尔县| 莎车县| 买车| 陆良县| 兰考县| 鹿邑县|