找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to the Theory and Application of the Laplace Transformation; Gustav Doetsch Book 1974 Springer-Verlag Berlin Heidelberg 1974

[復(fù)制鏈接]
樓主: 大口水罐
41#
發(fā)表于 2025-3-28 16:01:34 | 只看該作者
42#
發(fā)表于 2025-3-28 18:49:07 | 只看該作者
The Mapping of the Convolution,vestigate operations which involve more than one function, like sum or product of functions. The formula for the sum of functions . is immediately obvious. However, the image of the product of two original functions, . · . say, is quite complicated, thus necessitating that its study be deferred to Chapter 31.
43#
發(fā)表于 2025-3-29 01:41:21 | 只看該作者
Introduction of the Laplace Integral from Physical and Mathematical Points of View,The integral . is known as the Laplace integral; ., the dummy variable of integration, scans the real numbers between 0 and ∞, and the parameter . may be real-valued or complex-valued. Should this integral converge for some values of ., then it defines a function .(.):..
44#
發(fā)表于 2025-3-29 03:41:46 | 只看該作者
45#
發(fā)表于 2025-3-29 10:56:45 | 只看該作者
The Half-Plane of Convergence,Reviewing the examples of Chapter 2, we observe that for each of these functions the Laplace integral converges in a right half-plane. We shall show in_this Chapter that this is generally true for Laplace integrals. Prior to that, we shall determine the domain of absolute convergence of a Laplace integral.
46#
發(fā)表于 2025-3-29 15:12:35 | 只看該作者
47#
發(fā)表于 2025-3-29 16:21:50 | 只看該作者
The Laplace Transform as an Analytic Function,On p. 5 we developed the Laplace integral as a continuous analogue of the power series. In this Chapter, we shall demonstrate that a Laplace integral, like a power series, always represents an analytic function.
48#
發(fā)表于 2025-3-29 23:43:56 | 只看該作者
The Mapping of Differentiation,Using Theorem 8.1, we shall derive, in this Chapter, Theorem 9.1, which provides the image of differentiation. The latter will prove extremely useful in practical applications of the .-transformation. A few introductory remarks will aid the subsequent development.
49#
發(fā)表于 2025-3-30 03:02:28 | 只看該作者
Applications of the Convolution Theorem: Integral Relations,The .-transformation permits the transformation of the convolution, a complicated integral representation, into a simple algebraic product. This facility can be utilized to produce simple proofs of integral relations which are otherwise difficult to verify.
50#
發(fā)表于 2025-3-30 06:53:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 17:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通城县| 益阳市| 天长市| 遂溪县| 南昌市| 诸暨市| 凤阳县| 湖州市| 宜川县| 灵武市| 镇坪县| 铜梁县| 吉林省| 汾阳市| 合作市| 绥江县| 大兴区| 泗阳县| 永仁县| 遂昌县| 巴中市| 霍林郭勒市| 桃源县| 应用必备| 定安县| 方山县| 连城县| 博罗县| 观塘区| 彰武县| 南昌市| 霍山县| 巫溪县| 长沙县| 拉萨市| 禄劝| 乌鲁木齐市| 崇仁县| 进贤县| 黄浦区| 海伦市|