找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to the Theory and Application of the Laplace Transformation; Gustav Doetsch Book 1974 Springer-Verlag Berlin Heidelberg 1974

[復(fù)制鏈接]
樓主: 大口水罐
31#
發(fā)表于 2025-3-27 00:21:43 | 只看該作者
32#
發(fā)表于 2025-3-27 03:51:28 | 只看該作者
33#
發(fā)表于 2025-3-27 05:35:42 | 只看該作者
The Initial Value Problem of Ordinary Differential Equations with Constant Coefficients,ntegrating ordinary linear differential equations with constant coefficients in the interval . ≧ 0, for specified values of the solution and some of its derivatives at . = 0, the initial values (Initial Value Problem). This is a problem which may be solved by a familiar classical technique: First on
34#
發(fā)表于 2025-3-27 10:18:57 | 只看該作者
The Ordinary Differential Equation, specifying Initial Values for Derivatives of Arbitrary Order, a 0. However, one could encounter some initial value problem with . specified values at . = 0 for derivatives of arbitrary order. For instance, for same third order differential equation one might specify the initial values . .(0), . .(0), . . (0). In this case, we would solve the problem as if . (0)
35#
發(fā)表于 2025-3-27 16:56:36 | 只看該作者
36#
發(fā)表于 2025-3-27 18:02:05 | 只看該作者
The Ordinary Linear Differential Equation in the Space of Distributions,ibution-derivative equations.” In the latter, the given and the sought quantities are distributions. To emphasize the analogy to the case of functions, we shall employ here for the designation of distributions lower case letters like ., ., . . . (which are usually reserved for functions) instead of
37#
發(fā)表于 2025-3-28 00:33:27 | 只看該作者
38#
發(fā)表于 2025-3-28 02:21:12 | 只看該作者
39#
發(fā)表于 2025-3-28 06:48:26 | 只看該作者
40#
發(fā)表于 2025-3-28 14:03:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 15:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
闽侯县| 鄂托克旗| 五台县| 白水县| 佛山市| 灌阳县| 福泉市| 宁南县| 江北区| 宜川县| 安化县| 南陵县| 育儿| 雷州市| 沧州市| 青海省| 宜州市| 册亨县| 西昌市| 江阴市| 赤水市| 涡阳县| 泾源县| 北碚区| 南京市| 西充县| 于田县| 永丰县| 定西市| 周宁县| 泸溪县| 西藏| 南丹县| 通化市| 淳化县| 盐边县| 明溪县| 通渭县| 巴塘县| 曲麻莱县| 莲花县|