找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Stochastic Integration; K. L. Chung,R. J. Williams Textbook 1990Latest edition Springer Science+Business Media New York 19

[復(fù)制鏈接]
樓主: dilate
21#
發(fā)表于 2025-3-25 05:40:07 | 只看該作者
Extension of the Predictable Integrands,In this chapter, we show that the definition of the stochastic integral can be extended to a larger class of integrands than the predictable ones, when either a mild condition on the Doléans measure . is satisfied or . is continuous.
22#
發(fā)表于 2025-3-25 11:05:23 | 只看該作者
Quadratic Variation Process,For the remainder of this book, we shall only consider integrators . which are . local martingales. By Proposition 1.9 these are automatically local .-martingales. A more extensive treatment, encompassing right continuous integrators would require more elaborate considerations which are not suitable for inclusion in this short book.
23#
發(fā)表于 2025-3-25 15:05:11 | 只看該作者
Applications of the Ito Formula,A process . is a Brownian motion in . if and only if there is a standard filtration . such that . is a continuous local martingale with quadratic variation [M] satisfying
24#
發(fā)表于 2025-3-25 17:38:30 | 只看該作者
25#
發(fā)表于 2025-3-25 23:56:58 | 只看該作者
Stochastic Differential Equations,In this chapter, we consider . (SDE’s) of the form., or equivalently in coordinate form. where . (.., .) is an .-dimensional Brownian motion (. ≥ 1) starting from the origin, and . : . → . ? . and .: . → . are Borel measurable functions. Here . ? ., . ≥ 1, . ≥ 1, denotes the space of . × . real-valued matrices with the norm. for . ∈ . ? ..
26#
發(fā)表于 2025-3-26 00:58:53 | 只看該作者
https://doi.org/10.1007/978-1-4612-4480-6Brownian motion; Martingale; Probability theory; Stochastic calculus; clsmbc; local martingale; local time
27#
發(fā)表于 2025-3-26 07:30:09 | 只看該作者
The Ito Formula,rst proved it for the special case of integration with respect to Brownian motion. The essential aspects of It?’s formula are conveyed by the following. If . is a continuous local martingale and . is a twice continuously differentiable real-valued function on ., then the It? formula for .(..) is
28#
發(fā)表于 2025-3-26 09:38:10 | 只看該作者
K. L. Chung,R. J. WilliamsAffordable, softcover reprint of a classic textbook.Authors‘ exposition consistently chooses clarity over brevity.Includes an expanded collection of exercises from the first edition
29#
發(fā)表于 2025-3-26 16:05:49 | 只看該作者
30#
發(fā)表于 2025-3-26 17:01:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 15:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安乡县| 潼南县| 靖边县| 英德市| 博白县| 霍邱县| 桂东县| 台南市| 盐山县| 山西省| 乐清市| 凤城市| 黔西县| 延吉市| 土默特左旗| 文安县| 丹棱县| 密山市| 镇原县| 吉安县| 同德县| 内黄县| 南宫市| 晋宁县| 北安市| 和政县| 屯门区| 宝清县| 象州县| 镇原县| 安多县| 嘉义县| 泰来县| 台州市| 铜梁县| 济宁市| 织金县| 驻马店市| 保山市| 米易县| 图木舒克市|