找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Stochastic Integration; K. L. Chung,R. J. Williams Textbook 1990Latest edition Springer Science+Business Media New York 19

[復(fù)制鏈接]
查看: 26548|回復(fù): 46
樓主
發(fā)表于 2025-3-21 16:32:47 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Introduction to Stochastic Integration
編輯K. L. Chung,R. J. Williams
視頻videohttp://file.papertrans.cn/475/474229/474229.mp4
概述Affordable, softcover reprint of a classic textbook.Authors‘ exposition consistently chooses clarity over brevity.Includes an expanded collection of exercises from the first edition
叢書名稱Probability and Its Applications
圖書封面Titlebook: Introduction to Stochastic Integration;  K. L. Chung,R. J. Williams Textbook 1990Latest edition Springer Science+Business Media New York 19
描述This is a substantial expansion of the first edition. The last chapter on stochastic differential equations is entirely new, as is the longish section §9.4 on the Cameron-Martin-Girsanov formula. Illustrative examples in Chapter 10 include the warhorses attached to the names of L. S. Ornstein, Uhlenbeck and Bessel, but also a novelty named after Black and Scholes. The Feynman-Kac-Schrooinger development (§6.4) and the material on re- flected Brownian motions (§8.5) have been updated. Needless to say, there are scattered over the text minor improvements and corrections to the first edition. A Russian translation of the latter, without changes, appeared in 1987. Stochastic integration has grown in both theoretical and applicable importance in the last decade, to the extent that this new tool is now sometimes employed without heed to its rigorous requirements. This is no more surprising than the way mathematical analysis was used historically. We hope this modest introduction to the theory and application of this new field may serve as a text at the beginning graduate level, much as certain standard texts in analysis do for the deterministic counterpart. No monograph is worthy of the
出版日期Textbook 1990Latest edition
關(guān)鍵詞Brownian motion; Martingale; Probability theory; Stochastic calculus; clsmbc; local martingale; local time
版次2
doihttps://doi.org/10.1007/978-1-4612-4480-6
isbn_softcover978-1-4612-8837-4
isbn_ebook978-1-4612-4480-6Series ISSN 2297-0371 Series E-ISSN 2297-0398
issn_series 2297-0371
copyrightSpringer Science+Business Media New York 1990
The information of publication is updating

書目名稱Introduction to Stochastic Integration影響因子(影響力)




書目名稱Introduction to Stochastic Integration影響因子(影響力)學(xué)科排名




書目名稱Introduction to Stochastic Integration網(wǎng)絡(luò)公開度




書目名稱Introduction to Stochastic Integration網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Introduction to Stochastic Integration被引頻次




書目名稱Introduction to Stochastic Integration被引頻次學(xué)科排名




書目名稱Introduction to Stochastic Integration年度引用




書目名稱Introduction to Stochastic Integration年度引用學(xué)科排名




書目名稱Introduction to Stochastic Integration讀者反饋




書目名稱Introduction to Stochastic Integration讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:58:01 | 只看該作者
Generalized Ito Formula, Change of Time and Measure, formula for transforming a local martingale into a local martingale plus a state-dependent drift. We illustrate how this can be applied to obtain weak solutions of some stochastic differential equations.
板凳
發(fā)表于 2025-3-22 00:45:46 | 只看該作者
地板
發(fā)表于 2025-3-22 05:59:56 | 只看該作者
Definition of the Stochastic Integral,n . and ., the integral can be defined path-by-path. For instance, if . is a right continuous local ..-martingale whose paths are locally of bounded variation, and . is a continuous adapted process, then.is well-defined as a Riemann-Stieltjes integral for each . and ω, namely by the limit as n → ∞ of
5#
發(fā)表于 2025-3-22 11:52:45 | 只看該作者
6#
發(fā)表于 2025-3-22 13:52:51 | 只看該作者
7#
發(fā)表于 2025-3-22 19:12:08 | 只看該作者
8#
發(fā)表于 2025-3-22 22:42:34 | 只看該作者
9#
發(fā)表于 2025-3-23 03:16:13 | 只看該作者
10#
發(fā)表于 2025-3-23 08:05:33 | 只看該作者
K. L. Chung,R. J. Williamsdance for corporate planning regarding exploration and financial investments, as well as for venture capitalist and international funding bodies. As such, it provides an indispensable point of reference for fut978-3-662-47493-8
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 12:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巍山| 铜山县| 陕西省| 凌云县| 高州市| 江川县| 巴楚县| 梓潼县| 东乡族自治县| 河曲县| 北宁市| 萍乡市| 日土县| 潜山县| 赤水市| 广州市| 闽清县| 璧山县| 云梦县| 吉木萨尔县| 财经| 哈尔滨市| 察隅县| 卢湾区| 榆中县| 尉犁县| 宜宾市| 安图县| 旬阳县| 太仆寺旗| 青河县| 疏勒县| 曲水县| 巢湖市| 临城县| 万州区| 科技| 许昌县| 龙泉市| 垣曲县| 栖霞市|