找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Fractional Differential Equations; Constantin Milici,Gheorghe Dr?g?nescu,J. Tenreiro Book 2019 Springer Nature Switzerlan

[復制鏈接]
查看: 53839|回復: 37
樓主
發(fā)表于 2025-3-21 19:05:02 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Introduction to Fractional Differential Equations
編輯Constantin Milici,Gheorghe Dr?g?nescu,J. Tenreiro
視頻videohttp://file.papertrans.cn/474/473714/473714.mp4
概述Introduces Fractional Calculus in an accessible manner, based on standard integer calculus;.Supports the use of higher-level mathematical packages, such as Mathematica or Maple;.Facilitates understand
叢書名稱Nonlinear Systems and Complexity
圖書封面Titlebook: Introduction to Fractional Differential Equations;  Constantin Milici,Gheorghe Dr?g?nescu,J. Tenreiro  Book 2019 Springer Nature Switzerlan
描述.This book introduces a series of problems and methods insufficiently discussed in the field of Fractional Calculus – a major, emerging tool relevant to all areas of scientific inquiry. The authors present examples based on symbolic computation, written in Maple and Mathematica, and address both mathematical and computational areas in the context of mathematical modeling and the generalization of classical integer-order methods. Distinct from most books, the present volume fills the gap between mathematics and computer fields, and the transition from integer- to fractional-order methods..
出版日期Book 2019
關鍵詞Fractional Calculus; Fractional Derivatives; Fractional differential equations; Maple; Mathematica; fract
版次1
doihttps://doi.org/10.1007/978-3-030-00895-6
isbn_softcover978-3-030-13153-1
isbn_ebook978-3-030-00895-6Series ISSN 2195-9994 Series E-ISSN 2196-0003
issn_series 2195-9994
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Introduction to Fractional Differential Equations影響因子(影響力)




書目名稱Introduction to Fractional Differential Equations影響因子(影響力)學科排名




書目名稱Introduction to Fractional Differential Equations網(wǎng)絡公開度




書目名稱Introduction to Fractional Differential Equations網(wǎng)絡公開度學科排名




書目名稱Introduction to Fractional Differential Equations被引頻次




書目名稱Introduction to Fractional Differential Equations被引頻次學科排名




書目名稱Introduction to Fractional Differential Equations年度引用




書目名稱Introduction to Fractional Differential Equations年度引用學科排名




書目名稱Introduction to Fractional Differential Equations讀者反饋




書目名稱Introduction to Fractional Differential Equations讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:41:22 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:51:55 | 只看該作者
https://doi.org/10.1007/978-3-030-00895-6Fractional Calculus; Fractional Derivatives; Fractional differential equations; Maple; Mathematica; fract
地板
發(fā)表于 2025-3-22 08:13:45 | 只看該作者
5#
發(fā)表于 2025-3-22 11:16:46 | 只看該作者
6#
發(fā)表于 2025-3-22 12:54:37 | 只看該作者
7#
發(fā)表于 2025-3-22 20:42:45 | 只看該作者
Fractional Derivative and Fractional Integral,For every .?>?0 and a local integrable function .(.),the . FI of order . is defined:
8#
發(fā)表于 2025-3-22 22:31:17 | 只看該作者
9#
發(fā)表于 2025-3-23 04:58:43 | 只看該作者
Fractional Differential Equations,Let the fractional differential equation (FDE) be . with the conditions: . called alsoRiemann–Liouville FDE.
10#
發(fā)表于 2025-3-23 05:52:36 | 只看該作者
Generalized Systems,This chapter addresses the generalization of classical models and systems in the perspective of FC. The following sections study the Cornu, Emden, Hermite, Legendre, and Bessel fractional systems.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 17:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
山丹县| 桐庐县| 嘉峪关市| 星子县| 陵川县| 九寨沟县| 嘉禾县| 二手房| 垫江县| 阳西县| 开鲁县| 安溪县| 庄浪县| 安达市| 阿尔山市| 华亭县| 奈曼旗| 天门市| 井研县| 含山县| 简阳市| 肥东县| 鄯善县| 宝兴县| 宁城县| 南丰县| 定兴县| 车险| 府谷县| 东宁县| 新民市| 马龙县| 体育| 镇安县| 陆丰市| 称多县| 顺平县| 大宁县| 民勤县| 鸡西市| 上林县|