找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Fractional Differential Equations; Constantin Milici,Gheorghe Dr?g?nescu,J. Tenreiro Book 2019 Springer Nature Switzerlan

[復(fù)制鏈接]
查看: 53844|回復(fù): 37
樓主
發(fā)表于 2025-3-21 19:05:02 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Introduction to Fractional Differential Equations
編輯Constantin Milici,Gheorghe Dr?g?nescu,J. Tenreiro
視頻videohttp://file.papertrans.cn/474/473714/473714.mp4
概述Introduces Fractional Calculus in an accessible manner, based on standard integer calculus;.Supports the use of higher-level mathematical packages, such as Mathematica or Maple;.Facilitates understand
叢書名稱Nonlinear Systems and Complexity
圖書封面Titlebook: Introduction to Fractional Differential Equations;  Constantin Milici,Gheorghe Dr?g?nescu,J. Tenreiro  Book 2019 Springer Nature Switzerlan
描述.This book introduces a series of problems and methods insufficiently discussed in the field of Fractional Calculus – a major, emerging tool relevant to all areas of scientific inquiry. The authors present examples based on symbolic computation, written in Maple and Mathematica, and address both mathematical and computational areas in the context of mathematical modeling and the generalization of classical integer-order methods. Distinct from most books, the present volume fills the gap between mathematics and computer fields, and the transition from integer- to fractional-order methods..
出版日期Book 2019
關(guān)鍵詞Fractional Calculus; Fractional Derivatives; Fractional differential equations; Maple; Mathematica; fract
版次1
doihttps://doi.org/10.1007/978-3-030-00895-6
isbn_softcover978-3-030-13153-1
isbn_ebook978-3-030-00895-6Series ISSN 2195-9994 Series E-ISSN 2196-0003
issn_series 2195-9994
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Introduction to Fractional Differential Equations影響因子(影響力)




書目名稱Introduction to Fractional Differential Equations影響因子(影響力)學(xué)科排名




書目名稱Introduction to Fractional Differential Equations網(wǎng)絡(luò)公開度




書目名稱Introduction to Fractional Differential Equations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Introduction to Fractional Differential Equations被引頻次




書目名稱Introduction to Fractional Differential Equations被引頻次學(xué)科排名




書目名稱Introduction to Fractional Differential Equations年度引用




書目名稱Introduction to Fractional Differential Equations年度引用學(xué)科排名




書目名稱Introduction to Fractional Differential Equations讀者反饋




書目名稱Introduction to Fractional Differential Equations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:41:22 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:51:55 | 只看該作者
https://doi.org/10.1007/978-3-030-00895-6Fractional Calculus; Fractional Derivatives; Fractional differential equations; Maple; Mathematica; fract
地板
發(fā)表于 2025-3-22 08:13:45 | 只看該作者
5#
發(fā)表于 2025-3-22 11:16:46 | 只看該作者
6#
發(fā)表于 2025-3-22 12:54:37 | 只看該作者
7#
發(fā)表于 2025-3-22 20:42:45 | 只看該作者
Fractional Derivative and Fractional Integral,For every .?>?0 and a local integrable function .(.),the . FI of order . is defined:
8#
發(fā)表于 2025-3-22 22:31:17 | 只看該作者
9#
發(fā)表于 2025-3-23 04:58:43 | 只看該作者
Fractional Differential Equations,Let the fractional differential equation (FDE) be . with the conditions: . called alsoRiemann–Liouville FDE.
10#
發(fā)表于 2025-3-23 05:52:36 | 只看該作者
Generalized Systems,This chapter addresses the generalization of classical models and systems in the perspective of FC. The following sections study the Cornu, Emden, Hermite, Legendre, and Bessel fractional systems.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 01:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广饶县| 聂拉木县| 加查县| 花莲县| 弥渡县| 年辖:市辖区| 湖北省| 张家港市| 理塘县| 视频| 博客| 宁安市| 涡阳县| 辽宁省| 安徽省| 德州市| 科尔| 江阴市| 日土县| 潜山县| 色达县| 墨玉县| 阿拉善右旗| 中山市| 伊通| 桓仁| 珲春市| 寻甸| 肃宁县| 大庆市| 济源市| 乐山市| 托克逊县| 洪洞县| 龙江县| 绥化市| 辉南县| 平度市| 永顺县| 旬邑县| 安塞县|