找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Computational Origami; The World of New Com Ryuhei Uehara Book 2020 Springer Nature Singapore Pte Ltd. 2020 Computational O

[復(fù)制鏈接]
樓主: necrosis
21#
發(fā)表于 2025-3-25 07:14:01 | 只看該作者
22#
發(fā)表于 2025-3-25 10:32:57 | 只看該作者
23#
發(fā)表于 2025-3-25 12:19:28 | 只看該作者
Zipper-UnfoldingIn this chapter, we focus on the edge-unfolding of convex polyhedron. It is conjectured that we can always do that, however, it is not yet settled. Thus we focus on the unfolding that is realized by zipper.
24#
發(fā)表于 2025-3-25 19:09:36 | 只看該作者
Rep-CubeIn this chapter, we introduce a new concept of rep-cube and its known results. It is a fledgling concept born in 2016, so there are many topics to be studied.
25#
發(fā)表于 2025-3-25 23:51:36 | 只看該作者
Undecidability of FoldingThe concluding chapter of this book is the topic of origami modeling. So far, we mainly consider discrete origami problems, which suit computers. However, when we consider continuous problem on origami, we have to face a gap between discrete and continuous models. Using this gap, we can consider undecidability on origami.
26#
發(fā)表于 2025-3-26 02:38:51 | 只看該作者
Answers to ExercisesIn this chapter, we show the answers to exercises.
27#
發(fā)表于 2025-3-26 07:56:56 | 只看該作者
https://doi.org/10.1007/978-981-15-4470-5Computational Origami; Computational Geometry; Algorithms; Origami; Geometry; Folding; Unfolding; algorithm
28#
發(fā)表于 2025-3-26 12:33:41 | 只看該作者
29#
發(fā)表于 2025-3-26 14:02:16 | 只看該作者
One-Dimensional Origami Model and Stamp Foldingrip, and crease lines are orthogonal to the long side of the strip. That is, they are parallel to each other. Moreover, these crease lines are placed at regular intervals on the strip. As you can imagine, this is the simplest origami model in one-dimensional. In such a simple model, we have many problems from the viewpoint of algorithms.
30#
發(fā)表于 2025-3-26 17:33:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 03:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临沭县| 仁化县| 鄯善县| 盐津县| 大石桥市| 灵石县| 齐齐哈尔市| 耒阳市| 即墨市| 南昌县| 姜堰市| 房山区| 恭城| 宝兴县| 盐亭县| 五大连池市| 和顺县| 绥芬河市| 怀安县| 万全县| 亳州市| 特克斯县| 富源县| 教育| 淅川县| 榆中县| 邳州市| 比如县| 武川县| 兖州市| 南投市| 连云港市| 凤阳县| 双流县| 集安市| 博爱县| 阳山县| 巧家县| 上思县| 宿州市| 东宁县|