找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Computational Origami; The World of New Com Ryuhei Uehara Book 2020 Springer Nature Singapore Pte Ltd. 2020 Computational O

[復(fù)制鏈接]
樓主: necrosis
11#
發(fā)表于 2025-3-23 13:04:44 | 只看該作者
Ryuhei UeharaTd(. ? ?; Г) of the complexified tangent bundle of the manifold . with a Г-action. Let us construct this class. It belongs to the product . of even degree cohomology groups of the fixed point submanifolds ., where .0 runs over representatives of all conjugacy classes in Г. (Recall that the fixed poi
12#
發(fā)表于 2025-3-23 14:16:15 | 只看該作者
13#
發(fā)表于 2025-3-23 19:05:06 | 只看該作者
Common Nets of Boxes polygons on a square grid would be reasonable. Speaking of polyhedra that can be folded from a polygon on a square gird, the first thing that comes to mind is a rectangular parallelepiped, or “box”. Is there a single polygon on a square grid that can be folded into multiple rectangular parallelepip
14#
發(fā)表于 2025-3-24 00:32:09 | 只看該作者
15#
發(fā)表于 2025-3-24 03:37:14 | 只看該作者
16#
發(fā)表于 2025-3-24 08:29:59 | 只看該作者
Computational Complexity of Stamp Foldinger of folding. When you are given an origami design, you consider it is hard when the number of folding is more than one hundred. On the other hand, you feel it is easy when you obtain it after less than 10 times of folding. This intuition is formalized as folding complexity. The second one is “crea
17#
發(fā)表于 2025-3-24 12:14:41 | 只看該作者
Common Nets of a Regular Tetrahedron and Johnson-Zalgaller Solidsnce. On the other hand, as introduced in Sect.?., only for nets of a regular tetrahedron, its beautiful and useful characterization is known as a notion of .2 tiling. Then, what happens if one is limited to a net of a regular tetrahedron and the other is limited to an edge-unfolding of a more genera
18#
發(fā)表于 2025-3-24 18:06:10 | 只看該作者
19#
發(fā)表于 2025-3-24 20:17:06 | 只看該作者
http://image.papertrans.cn/i/image/473553.jpg
20#
發(fā)表于 2025-3-25 00:37:03 | 只看該作者
978-981-15-4472-9Springer Nature Singapore Pte Ltd. 2020
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 03:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
郴州市| 荥阳市| 五大连池市| 丽江市| 望江县| 奉贤区| 怀柔区| 昭苏县| 乐山市| 辉南县| 洛扎县| 洪泽县| 天等县| 泽州县| 石渠县| 凤城市| 永城市| 金塔县| 洪泽县| 铁岭县| 淳安县| 五华县| 修文县| 米泉市| 平凉市| 容城县| 鱼台县| 延川县| 西青区| 虹口区| 德化县| 龙岩市| 金塔县| 织金县| 仁怀市| 峨边| 景宁| 藁城市| 秀山| 长武县| 海盐县|