找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Axiomatic Set Theory; Gaisi Takeuti,Wilson M. Zaring Textbook 19711st edition Springer-Verlag Berlin Heidelberg 1971 arith

[復(fù)制鏈接]
樓主: patch-test
31#
發(fā)表于 2025-3-26 23:44:01 | 只看該作者
https://doi.org/10.1007/978-1-4684-9915-5arithmetic; axiom of choice; function; logic; ordinal; set; set theory
32#
發(fā)表于 2025-3-27 03:26:29 | 只看該作者
Language and Logic,The language of our theory consists of
33#
發(fā)表于 2025-3-27 06:54:16 | 只看該作者
The Elementary Properties of Classes,In this section we will introduce certain properties of classes with which the reader is already familiar. The immediate consequences of the definitions are for the most part elementary and easily proved; consequently they will be left to the reader as exercises.
34#
發(fā)表于 2025-3-27 12:39:15 | 只看該作者
Ordinal Arithmetic,In Section 7 we defined . + 1 to be . ∪ {.}. We proved that . + 1 is an ordinal, that is, . + 1 is a transitive set that is well ordered by the ∈-relation. As a well ordered set . + 1 has an initial segment . and its “terminal” segment beginning with . consists of just a single element, namely ..
35#
發(fā)表于 2025-3-27 17:40:42 | 只看該作者
Cardinal Numbers,The equivalence of sets is basic to the theory of cardinal numbers. Two sets are equivalent, or equipollent, provided there exists a one-to-one correspondence between them.
36#
發(fā)表于 2025-3-27 18:29:28 | 只看該作者
37#
發(fā)表于 2025-3-27 23:06:11 | 只看該作者
38#
發(fā)表于 2025-3-28 04:42:20 | 只看該作者
39#
發(fā)表于 2025-3-28 08:32:41 | 只看該作者
40#
發(fā)表于 2025-3-28 10:42:25 | 只看該作者
,Cohen’s Method,In proving that the AC and the GCH are consistent with ZF G?del used the so called method of internal models. From the assumption that the universe . is a model of ZF G?del prescribed a method for producing a submodel . that is also a model of ., AC and GCH. This submodel is defined as the class of all sets having a certain property i.e. ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 12:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
弋阳县| 临江市| 阜宁县| 肃北| 庄浪县| 商城县| 民乐县| 广西| 塔城市| 武穴市| 揭阳市| 汝南县| 洛川县| 洛南县| 平阴县| 德令哈市| 卢氏县| 吉林省| 湟源县| 三穗县| 淮南市| 邵阳县| 冕宁县| 同德县| 永福县| 库尔勒市| 永康市| 盐城市| 科技| 祥云县| 昆山市| 满洲里市| 彝良县| 赤城县| 北辰区| 临海市| 巴马| 施秉县| 改则县| 巨野县| 临武县|