找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integer Programming and Combinatorial Optimization; 22nd International C Mohit Singh,David P. Williamson Conference proceedings 2021 Spring

[復制鏈接]
樓主: intern
41#
發(fā)表于 2025-3-28 15:02:48 | 只看該作者
Multi-cover Inequalities for Totally-Ordered Multiple Knapsack Sets,if the weights in the inequalities form a totally-ordered set. Thus, we introduce and study the structure of a totally-ordered multiple knapsack set. The valid . we derive for its convex hull have a number of interesting properties. First, they generalize the well-known (1,?.)-configuration inequali
42#
發(fā)表于 2025-3-28 22:27:36 | 只看該作者
43#
發(fā)表于 2025-3-29 00:57:03 | 只看該作者
44#
發(fā)表于 2025-3-29 06:59:26 | 只看該作者
On the Recognition of ,-Modular Matrices,value is .. We will succeed in solving this problem in polynomial time unless . possesses a ., that is, . has nonzero . subdeterminants . and . satisfying .. This is an extension of the well-known recognition algorithm for totally unimodular matrices. As a consequence of our analysis, we present a p
45#
發(fā)表于 2025-3-29 07:17:31 | 只看該作者
46#
發(fā)表于 2025-3-29 15:02:28 | 只看該作者
47#
發(fā)表于 2025-3-29 19:37:28 | 只看該作者
0302-9743 ace during May 19-21, 2021. The conference was organized by Georgia Institute of Technology and planned to take place it Atlanta, GA, USA, but changed to an online format due to the COVID-19 pandemic.?.The 33 papers included in this book were carefully reviewed and selected from 90 submissions. IPCO
48#
發(fā)表于 2025-3-29 20:00:14 | 只看該作者
Complexity, Exactness, and Rationality in Polynomial Optimization, that it is NP Hard to detect if rational solutions exist or if they exist of any reasonable size. Lastly, we show that in fixed dimension, the feasibility problem over a set defined by polynomial inequalities is in NP.
49#
發(fā)表于 2025-3-30 01:09:16 | 只看該作者
50#
發(fā)表于 2025-3-30 05:20:43 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 00:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
罗田县| 格尔木市| 嘉祥县| 富阳市| 新蔡县| 永兴县| 夏津县| 蓬莱市| 东港市| 吴桥县| 东莞市| 石狮市| 毕节市| 靖宇县| 陕西省| 镇江市| 白玉县| 镇沅| 攀枝花市| 光山县| 桓仁| 固阳县| 泗水县| 揭西县| 都兰县| 德化县| 仙游县| 长葛市| 新和县| 七台河市| 巴青县| 景宁| 阿巴嘎旗| 柳江县| 长垣县| 定结县| 青海省| 耒阳市| 齐河县| 醴陵市| 宜兴市|