找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Integer Programming and Combinatorial Optimization; 22nd International C Mohit Singh,David P. Williamson Conference proceedings 2021 Spring

[復(fù)制鏈接]
樓主: intern
31#
發(fā)表于 2025-3-26 23:55:48 | 只看該作者
32#
發(fā)表于 2025-3-27 01:26:45 | 只看該作者
Complexity, Exactness, and Rationality in Polynomial Optimization,e show that, under some separability conditions, certain cubic polynomially constrained sets admit rational solutions. However, we show in other cases that it is NP Hard to detect if rational solutions exist or if they exist of any reasonable size. Lastly, we show that in fixed dimension, the feasib
33#
發(fā)表于 2025-3-27 07:15:24 | 只看該作者
34#
發(fā)表于 2025-3-27 11:46:17 | 只看該作者
35#
發(fā)表于 2025-3-27 13:46:50 | 只看該作者
A Finite Time Combinatorial Algorithm for Instantaneous Dynamic Equilibrium Flows,ly select en route currently shortest paths towards their destination. We analyze IDE within the Vickrey bottleneck model, where current travel times along a path consist of the physical travel times plus the sum of waiting times in all the queues along a path. Although IDE have been studied for dec
36#
發(fā)表于 2025-3-27 19:07:25 | 只看該作者
A Combinatorial Algorithm for Computing the Degree of the Determinant of a Generic Partitioned Polyial matrix) ., where . is a . matrix over a field ., . is an indeterminate, and . is an integer for ., and . is an additional indeterminate. This problem can be viewed as an algebraic generalization of the maximum perfect bipartite matching problem..The main result of this paper is a combinatorial .
37#
發(fā)表于 2025-3-28 00:00:09 | 只看該作者
On the Implementation and Strengthening of Intersection Cuts for QCQPs,tudied tool in integer programming whose flexibility has triggered these renewed efforts in non-linear settings. In this work, we consider intersection cuts using the recently proposed construction of .. Using these sets, we derive closed-form formulas to compute intersection cuts which allow for qu
38#
發(fā)表于 2025-3-28 03:38:44 | 只看該作者
39#
發(fā)表于 2025-3-28 09:57:14 | 只看該作者
40#
發(fā)表于 2025-3-28 11:59:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 20:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳谷县| 望都县| 西乡县| 施甸县| 灌云县| 太和县| 宣城市| 古田县| 平陆县| 湖口县| 巴里| 台南县| 丹棱县| 库尔勒市| 贺兰县| 三江| 揭阳市| 丹东市| 南昌县| 遂昌县| 宜阳县| 彰化县| 洪雅县| 绿春县| 仪陇县| 广东省| 黄平县| 濮阳市| 江永县| 景德镇市| 包头市| 都江堰市| 武清区| 郁南县| 周口市| 白城市| 桑植县| 南昌市| 延吉市| 康定县| 聊城市|