找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Information Granularity, Big Data, and Computational Intelligence; Witold Pedrycz,Shyi-Ming Chen Book 2015 Springer International Publishi

[復(fù)制鏈接]
樓主: Spouse
31#
發(fā)表于 2025-3-26 22:52:53 | 只看該作者
Incrementally Mining Frequent Patterns from Large Database generate a large tree structure. In this paper, we propose two efficient algorithms which only keep frequent items in a condensed tree structure. When a set of new transactions is added into the database, our algorithms can efficiently update the tree structure without scanning the original database.
32#
發(fā)表于 2025-3-27 04:00:42 | 只看該作者
Improved Latent Semantic Indexing-Based Data Mining Methods and an Application to Big Data Analysis that in the context of customer support centers, service experience has strongly influence on perceived customer satisfaction and service quality. Based on the research results an improved approach for innovative CRM is presented. The thesis proposes three methods and explains an application to big data analysis for CRM at the end.
33#
發(fā)表于 2025-3-27 09:01:35 | 只看該作者
Multi-granular Evaluation Model Through Fuzzy Random Regression to Improve Information Granularityction process for fruits requires a method to ensure product quality. We include simulation results and highlight the advantage of the proposed method in handling the existence of fuzzy random information.
34#
發(fā)表于 2025-3-27 11:28:55 | 只看該作者
35#
發(fā)表于 2025-3-27 16:41:14 | 只看該作者
36#
發(fā)表于 2025-3-27 21:26:57 | 只看該作者
Customer Relationship Management and Big Data Miningcs, increase the value to the customer, and improve their competitive advantages of enterprises. In this chapter, discuss big data mining, customer relationship management, customer value, and propose a case study of big data mining for customer relationship management with data of the Automotive Maintenance Industry.
37#
發(fā)表于 2025-3-28 01:39:16 | 只看該作者
38#
發(fā)表于 2025-3-28 02:23:31 | 只看該作者
The Web KnowARR Framework: Orchestrating Computational Intelligence with Graph Databases On one hand, they resort to non-public content and on the other they resort to content that is available to the public (mostly on the Web). The Semantic Web offers opportunities not only to present public content descriptively but also to show relationships. The proposed framework can serve as the basis for the public content of stakeholder maps.
39#
發(fā)表于 2025-3-28 09:15:11 | 只看該作者
40#
發(fā)表于 2025-3-28 11:03:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 00:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌审旗| 苏州市| 赣州市| 夏邑县| 万宁市| 盐城市| 军事| 黄大仙区| 陵川县| 泽州县| 鄂温| 苏州市| 宽城| 新绛县| 三原县| 南城县| 五峰| 响水县| 三台县| 含山县| 宜丰县| 郧西县| 桃园市| 南充市| 新竹市| 怀远县| 甘孜县| 鄂托克旗| 米易县| 固安县| 新蔡县| 广元市| 陆良县| 外汇| 祥云县| 桓仁| 台江县| 剑河县| 晴隆县| 天津市| 东海县|