找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Information Granularity, Big Data, and Computational Intelligence; Witold Pedrycz,Shyi-Ming Chen Book 2015 Springer International Publishi

[復(fù)制鏈接]
樓主: Spouse
21#
發(fā)表于 2025-3-25 05:40:38 | 只看該作者
Nearest Neighbor Queries on Big Databased on a novel data structure, coined ..-heap. ., being parameter-free, performs efficiently in the face of high velocity and skewed data. In our analytical studies, we found that . provides better time complexity compared to existing approaches and is very well suited for large scale scenarios.
22#
發(fā)表于 2025-3-25 08:21:11 | 只看該作者
23#
發(fā)表于 2025-3-25 14:16:45 | 只看該作者
Information Granules Problem: An Efficient Solution of Real-Time Fuzzy Regression Analysis the computing time, especially in case of real-time data analysis, as well as an overall computational complexity. Additionally, the proposed approach shows an efficient real-time processing of information granules regression analysis based on the convex hull approach in which a Beneath-Beyond algo
24#
發(fā)表于 2025-3-25 19:52:59 | 只看該作者
How to Understand Connections Based on Big Data: From Cliques to Flexible Granulessonably successful. The second limitation is that this heuristic method is based on using “crisp” granules (clusters), while in reality, the corresponding granules are flexible (“fuzzy”). In this chapter, we explain how the known semi-heuristic method can be justified in statistical terms, and we al
25#
發(fā)表于 2025-3-25 20:04:10 | 只看該作者
26#
發(fā)表于 2025-3-26 01:12:01 | 只看該作者
The Property of Different Granule and Granular Methods Based on Quotient Spacenly it can represent vectors of the problem domain, different structures between vectors, but also it can define different attribute functions and operations etc. In this paper, we discuss the method how to represent and to partition an object in granular worlds, and educe the relationship of differ
27#
發(fā)表于 2025-3-26 05:13:10 | 只看該作者
28#
發(fā)表于 2025-3-26 10:53:05 | 只看該作者
29#
發(fā)表于 2025-3-26 15:22:39 | 只看該作者
30#
發(fā)表于 2025-3-26 18:27:49 | 只看該作者
2197-6503 duction to Computational Intelligence.Self-contained and eas.The recent pursuits emerging in the realm of big data processing, interpretation, collection and organization have emerged in numerous sectors including business, industry and government organizations. Data sets such as customer transactio
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 00:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岐山县| 黄山市| 东安县| 平定县| 宣武区| 呈贡县| 磴口县| 叶城县| 辉县市| 通化县| 松江区| 申扎县| 璧山县| 高要市| 清徐县| 东乡族自治县| 苍溪县| 徐水县| 巴中市| 农安县| 澄迈县| 和田市| 莱阳市| 大关县| 鄂托克旗| 彭山县| 大理市| 交口县| 仙游县| 凌云县| 江达县| 英吉沙县| 南昌市| 利辛县| 南城县| 宜兰市| 溧阳市| 濮阳县| 大英县| 巴东县| 乌恰县|